Skip to main content

Characterization of Circular RNAs

  • Protocol
  • First Online:
Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2372))

Abstract

Accumulated lines of evidence have revealed that a large number of circular RNAs are produced in transcriptomes from fruit fly to mouse and human. Unlike linear RNAs shaped with 5′ cap and 3′ tail, circular RNAs are characterized by covalently closed loop structures without open terminals, thus required specific treatments for their identification and validation. Here, we describe a detailed pipeline for the characterization of circular RNAs. It has been successfully applied to the study of circular intronic RNAs (ciRNAs) derived from intron lariats and circular RNAs (circRNAs) produced from back spliced exons in human.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanger HL et al (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 73:3852–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arnberg AC et al (1980) Some yeast mitochondrial RNAs are circular. Cell 19:313–319

    Article  CAS  PubMed  Google Scholar 

  3. Kos A et al (1986) The hepatitis delta (delta) virus possesses a circular RNA. Nature 323:558–560

    Article  CAS  PubMed  Google Scholar 

  4. Nigro JM et al (1991) Scrambled exons. Cell 64:607–613

    Article  CAS  PubMed  Google Scholar 

  5. Cocquerelle C et al (1992) Splicing with inverted order of exons occurs proximal to large introns. EMBO J 11:1095–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Capel B et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73:1019–1030

    Article  CAS  PubMed  Google Scholar 

  7. Rybak-Wolf A et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885

    Article  CAS  PubMed  Google Scholar 

  8. You X et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18:603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Piwecka M et al (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357:eaam8526

    Article  PubMed  CAS  Google Scholar 

  10. Chen YG et al (2017) Sensing self and foreign circular RNAs by intron identity. Mol Cell 67(228–238):e225

    Google Scholar 

  11. Li X et al (2017) Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell 67(214–227):e217

    Google Scholar 

  12. Liu CX et al (2019) Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177:865–880.e21

    Article  CAS  PubMed  Google Scholar 

  13. Conn SJ et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160:1125–1134

    Article  CAS  PubMed  Google Scholar 

  14. Bachmayr-Heyda A et al (2015) Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 5:8057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Panda AC et al (2017) Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res 45:4021–4035

    Article  CAS  PubMed  Google Scholar 

  16. Guarnerio J et al (2016) Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 165:289–302

    Article  CAS  PubMed  Google Scholar 

  17. Guarnerio J et al (2019) Intragenic antagonistic roles of protein and circRNA in tumorigenesis. Cell Res 29:628–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Westholm JO et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9:1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cortes-Lopez M et al (2018) Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics 19:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gruner H, Cortes-Lopez M, Cooper DA, Bauer M, Miura P (2016) CircRNA accumulation in the aging mouse brain. Sci Rep 6:38907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li X, Yang L, Chen LL (2018) The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71:428–442

    Article  CAS  PubMed  Google Scholar 

  22. Kristensen LS et al (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691

    Article  CAS  PubMed  Google Scholar 

  23. Graveley BR (2008) Molecular biology: power sequencing. Nature 453:1197–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang L, Duff MO, Graveley BR, Carmichael GG, Chen LL (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12:R16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806

    Article  CAS  PubMed  Google Scholar 

  26. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7:e30733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang XO et al (2014) Complementary sequence-mediated exon circularization. Cell 159:134–147

    Article  CAS  PubMed  Google Scholar 

  28. Hansen TB et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y et al (2016) The biogenesis of nascent circular RNAs. Cell Rep 15:611–624

    Article  CAS  PubMed  Google Scholar 

  30. Jeck WR et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Memczak S et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  PubMed  Google Scholar 

  32. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9:e1003777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211

    Article  CAS  PubMed  Google Scholar 

  34. Zhang XO et al (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26:1277–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dong R, Ma XK, Chen LL, Yang L (2017) Increased complexity of circRNA expression during species evolution. RNA Biol 14:1064–1074

    Article  PubMed  Google Scholar 

  36. Ivanov A et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10:170–177

    Article  CAS  PubMed  Google Scholar 

  37. Yin QF, Chen LL, Yang L (2015) Fractionation of non-polyadenylated and ribosomal-free RNAs from mammalian cells. Methods Mol Biol 1206:69–80

    Article  CAS  PubMed  Google Scholar 

  38. Dong R, Ma XK, Chen LL, Yang L (2019) Genome-wide annotation of circRNAs and their alternative back-splicing/splicing with CIRCexplorer pipeline. Methods Mol Biol 1870:137–149

    Article  CAS  PubMed  Google Scholar 

  39. Ma XK et al (2020) CIRCexplorer3: a CLEAR pipeline for direct comparison of circular and linear RNA expression. Genomics Proteomics Bioinformatics 17:511–521

    Article  PubMed Central  Google Scholar 

  40. Suzuki H et al (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34:e63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Xiao MS, Wilusz JE (2019) An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res 47:8755–8769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by 31730111, 91940303, 31925011, and 31725009 from the National Natural Science Foundation of China, China to L.Y. and L.L.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Yang or Ling-Ling Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, Y., Yang, L., Chen, LL. (2021). Characterization of Circular RNAs. In: Zhang, L., Hu, X. (eds) Long Non-Coding RNAs. Methods in Molecular Biology, vol 2372. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1697-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1697-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1696-3

  • Online ISBN: 978-1-0716-1697-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics