Skip to main content

Theory and Analysis of Single-Molecule FRET Experiments

  • Protocol
  • First Online:
Protein Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2376))

  • 1779 Accesses

Abstract

Inter-dye distances and conformational dynamics can be studied using single-molecule FRET measurements. We consider two approaches to analyze sequences of photons with recorded photon colors and arrival times. The first approach is based on FRET efficiency histograms obtained from binned photon sequences. The experimental histograms are compared with the theoretical histograms obtained using the joint distribution of acceptor and donor photons or the Gaussian approximation. In the second approach, a photon sequence is analyzed without binning. The parameters of a model describing conformational dynamics are found by maximizing the appropriate likelihood function. The first approach is simpler, while the second one is more accurate, especially when the population of species is small and transition rates are fast. The likelihood-based analysis as well as the recoloring method has the advantage that diffusion of molecules through the laser focus can be rigorously handled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michalet X, Weiss S, Jäger M (2006) Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem Rev 106:1785–1813. https://doi.org/10.1021/cr0404343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schuler B, Eaton WA (2008) Protein folding studied by single-molecule FRET. Curr Opin Struct Biol 18:16–26. https://doi.org/10.1016/j.sbi.2007.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schuler B, Hofmann H (2013) Single-molecule spectroscopy of protein folding dynamics-expanding scope and timescales. Curr Opin Struct Biol 23:36–47. https://doi.org/10.1016/j.sbi.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  4. Dimura M, Peulen TO, Hanke CA et al (2016) Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr Opin Struct Biol 40:163–185. https://doi.org/10.1016/j.sbi.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z, Campos LA, Muñoz V (2016) Single-molecule fluorescence studies of fast protein folding. In: Spies M, Chemla YR (eds) Single-molecule enzymology: fluorescence-based and high-throughput methods. Elsevier Academic Press Inc., San Diego, pp 417–459

    Chapter  Google Scholar 

  6. Talaga DS, Lau WL, Roder H et al (2000) Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. Proc Natl Acad Sci U S A 97:13021–13026. https://doi.org/10.1073/pnas.97.24.13021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rhoades E, Gussakovsky E, Haran G (2003) Watching proteins fold one molecule at a time. Proc Natl Acad Sci U S A 100:3197–3202. https://doi.org/10.1073/pnas.2628068100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goldner LS, Jofre AM, Tang J (2010) Droplet confinement and fluorescence measurement of single molecules. Methods Enzymol 472:61–88. https://doi.org/10.1016/S0076-6879(10)72015-2

    Article  CAS  PubMed  Google Scholar 

  9. Dahan M, Deniz AA, Ha T et al (1999) Ratiometric measurement and identification of single diffusing molecules. Chem Phys 247:85–106. https://doi.org/10.1016/S0301-0104(99)00132-9

    Article  CAS  Google Scholar 

  10. Schuler B, Lipman EA, Eaton WA (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419:743–747. https://doi.org/10.1038/nature01060

    Article  CAS  PubMed  Google Scholar 

  11. Hoffmann A, Nettels D, Clark J et al (2011) Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: recurrence analysis of single particles (RASP). Phys Chem Chem Phys 13:1857–1871. https://doi.org/10.1039/c0cp01911a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fries JR, Brand L, Eggeling C et al (1998) Quantitative identification of different single molecules by selective time-resolved confocal fluorescence spectroscopy. J Phys Chem A 102:6601–6613. https://doi.org/10.1021/jp980965t

    Article  CAS  Google Scholar 

  13. Zhang K, Yang H (2005) Photon-by-photon determination of emission bursts from diffusing single chromophores. J Phys Chem B 109:21930–21937. https://doi.org/10.1021/jp0546047

    Article  CAS  PubMed  Google Scholar 

  14. Hoffmann A, Kane A, Nettels D et al (2007) Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy. Proc Natl Acad Sci U S A 104:105–110. https://doi.org/10.1073/pnas.0604353104

    Article  CAS  PubMed  Google Scholar 

  15. Gopich IV, Szabo A (2003) Single-macromolecule fluorescence resonance energy transfer and free-energy profiles. J Phys Chem B 107:5058–5063. https://doi.org/10.1021/jp027481o

    Article  CAS  Google Scholar 

  16. Gopich I, Szabo A (2005) Theory of photon statistics in single-molecule Förster resonance energy transfer. J Chem Phys 122:14707. https://doi.org/10.1063/1.1812746

    Article  CAS  PubMed  Google Scholar 

  17. Gopich IV, Szabo A (2007) Single-molecule FRET with diffusion and conformational dynamics. J Phys Chem B 111:12925–12932. https://doi.org/10.1021/jp075255e

    Article  CAS  PubMed  Google Scholar 

  18. Gopich IV, Szabo A (2010) FRET efficiency distributions of multistate single molecules. J Phys Chem B 114:15221–15226. https://doi.org/10.1021/jp105359z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chung HS, Gopich IV, McHale K et al (2011) Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein. J Phys Chem A 115:3642–3656. https://doi.org/10.1021/jp1009669

    Article  CAS  PubMed  Google Scholar 

  20. Nettels D, Gopich IV, Hoffmann A, Schuler B (2007) Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc Natl Acad Sci U S A 104:2655–2660. https://doi.org/10.1073/pnas.0611093104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Borgia A, Wensley BG, Soranno A et al (2012) Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy. Nat Commun 3:1195. https://doi.org/10.1038/ncomms2204

    Article  CAS  PubMed  Google Scholar 

  22. Antonik M, Felekyan S, Gaiduk A, Seidel CAM (2006) Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. J Phys Chem B 110:6970–6978. https://doi.org/10.1021/jp057257+

    Article  CAS  PubMed  Google Scholar 

  23. Nir E, Michalet X, Hamadani KM et al (2006) Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. J Phys Chem B 110:22103–22124. https://doi.org/10.1021/jp063483n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watkins LP, Chang H, Yang H (2006) Quantitative single-molecule conformational distributions: a case study with poly-(L-proline). J Phys Chem A 110:5191–5203. https://doi.org/10.1021/jp055886d

    Article  CAS  PubMed  Google Scholar 

  25. Hanson JA, Duderstadt K, Watkins LP et al (2007) Illuminating the mechanistic roles of enzyme conformational dynamics. Proc Natl Acad Sci U S A 104:18055–18060. https://doi.org/10.1073/pnas.0708600104

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kalinin S, Valeri A, Antonik M et al (2010) Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. J Phys Chem B 114:7983–7995. https://doi.org/10.1021/jp102156t

    Article  CAS  PubMed  Google Scholar 

  27. Santoso Y, Joyce CM, Potapova O et al (2010) Conformational transitions in DNA polymerase I revealed by single-molecule FRET. Proc Natl Acad Sci U S A 107:715–720. https://doi.org/10.1073/pnas.0910909107

    Article  PubMed  Google Scholar 

  28. Sisamakis E, Valeri A, Kalinin S et al (2010) Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol 475:455–514. https://doi.org/10.1016/S0076-6879(10)75018-7

    Article  CAS  PubMed  Google Scholar 

  29. Gopich IV, Szabo A (2009) Decoding the pattern of photon colors in single-molecule FRET. J Phys Chem B 113:10965–10973. https://doi.org/10.1021/jp903671p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chung HS, Gopich IV (2014) Fast single-molecule FRET spectroscopy: theory and experiment. Phys Chem Chem Phys 34:18644–18657. https://doi.org/10.1039/c4cp02489c

    Article  CAS  Google Scholar 

  31. Chung HS (2017) Transition path times measured by single-molecule spectroscopy. J Mol Biol 430:409–423. https://doi.org/10.1016/J.JMB.2017.05.018

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chung HS, Eaton WA (2018) Protein folding transition path times from single molecule FRET. Curr Opin Struct Biol 48:30–39. https://doi.org/10.1016/J.SBI.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  33. Andrec M, Levy RM, Talaga DS (2003) Direct determination of kinetic rates from single-molecule photon arrival trajectories using hidden Markov models. J Phys Chem A 107:7454–7464. https://doi.org/10.1021/jp035514+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schröder GF, Grubmüller H (2003) Maximum likelihood trajectories from single molecule fluorescence resonance energy transfer experiments. J Chem Phys 119:9920–9924. https://doi.org/10.1063/1.1616511

    Article  CAS  Google Scholar 

  35. Watkins LP, Yang H (2005) Detection of intensity change points in time-resolved single-molecule measurements. J Phys Chem B 109:617–628. https://doi.org/10.1021/jp0467548

    Article  CAS  PubMed  Google Scholar 

  36. Kou SC, Xie XS, Liu JS (2005) Bayesian analysis of single-molecule experimental data. J R Stat Soc Ser C Appl Stat 54:469–506. https://doi.org/10.1111/j.1467-9876.2005.00509.x

    Article  Google Scholar 

  37. Jäger M, Kiel A, Herten D-P, Hamprecht FA (2009) Analysis of single-molecule fluorescence spectroscopic data with a Markov-modulated Poisson process. ChemPhysChem 10:2486–2495. https://doi.org/10.1002/cphc.200900331

    Article  CAS  PubMed  Google Scholar 

  38. Hoefling M, Lima N, Haenni D et al (2011) Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach. PLoS One 6:e19791. https://doi.org/10.1371/journal.pone.0019791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haas KR, Yang H, Chu J-W (2013) Expectation-maximization of the potential of mean force and diffusion coefficient in Langevin dynamics from single molecule FRET data photon by photon. J Phys Chem B 117:15591–15605. https://doi.org/10.1021/jp405983d

    Article  CAS  PubMed  Google Scholar 

  40. Ramanathan R, Muñoz V (2015) A method for extracting the free energy surface and conformational dynamics of fast-folding proteins from single molecule photon trajectories. J Phys Chem B 119:7944–7956. https://doi.org/10.1021/acs.jpcb.5b03176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McKinney SA, Joo C, Ha T (2006) Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 91:1941–1951. https://doi.org/10.1529/biophysj.106.082487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee T-H (2009) Extracting kinetics information from single-molecule fluorescence resonance energy transfer data using hidden Markov models. J Phys Chem B 113:11535–11542. https://doi.org/10.1021/jp903831z

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y, Park J, Dahmen KA et al (2010) A comparative study of multivariate and univariate hidden Markov modelings in time-binned single-molecule FRET data analysis. J Phys Chem B 114:5386–5403. https://doi.org/10.1021/jp9057669

    Article  CAS  PubMed  Google Scholar 

  44. Pirchi M, Ziv G, Riven I et al (2011) Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein. Nat Commun 2:493. https://doi.org/10.1038/ncomms1504

    Article  CAS  PubMed  Google Scholar 

  45. Keller BG, Kobitski A, Jäschke A et al (2014) Complex RNA folding kinetics revealed by single-molecule FRET and hidden Markov models. J Am Chem Soc 136:4534–4543. https://doi.org/10.1021/ja4098719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schmid S, Götz M, Hugel T (2016) Single-molecule analysis beyond dwell times: demonstration and assessment in and out of equilibrium. Biophys J 111:1375–1384. https://doi.org/10.1016/j.bpj.2016.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gopich IV (2012) Likelihood functions for the analysis of single-molecule binned photon sequences. Chem Phys 396:53–60. https://doi.org/10.1016/j.chemphys.2011.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pirchi M, Tsukanov R, Khamis R et al (2016) Photon-by-photon hidden Markov model analysis for microsecond single-molecule FRET kinetics. J Phys Chem B 120:13065–13075. https://doi.org/10.1021/acs.jpcb.6b10726

    Article  CAS  PubMed  Google Scholar 

  49. Gopich IV (2015) Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET. J Chem Phys 142:34110. https://doi.org/10.1063/1.4904381

    Article  CAS  Google Scholar 

  50. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  51. Gopich IV, Szabo A (2006) Theory of the statistics of kinetic transitions with application to single-molecule enzyme catalysis. J Chem Phys 124:154712. https://doi.org/10.1063/1.2180770

    Article  CAS  PubMed  Google Scholar 

  52. Gopich IV, Szabo A (2008) Theory of photon counting in single-molecule spectroscopy. In: Barkai E, Brown FLH, Orrit M, Yang H (eds) Theory and evaluation of single-molecule signals. World Scientific Publishing Co. Ltd., Singapore, pp 181–244

    Chapter  Google Scholar 

  53. Haenni D, Zosel F, Reymond L et al (2013) Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer. J Phys Chem B 117:13015–13028. https://doi.org/10.1021/jp402352s

    Article  CAS  PubMed  Google Scholar 

  54. Nettels D, Haenni D, Maillot S et al (2015) Excited state annihilation reduces power dependence of single-molecule FRET experiments. Phys Chem Chem Phys 17:32304–32315. https://doi.org/10.1039/C5CP05321H

    Article  CAS  PubMed  Google Scholar 

  55. Gopich IV, Szabo A (2012) Theory of single-molecule FRET efficiency histograms. Adv Chem Phys 146:245–297

    CAS  Google Scholar 

  56. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516. https://doi.org/10.1038/nmeth.1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schuler B, Lipman EA, Steinbach PJ et al (2005) Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence. Proc Natl Acad Sci U S A 102:2754–2759. https://doi.org/10.1073/pnas.0408164102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Best RB, Merchant KA, Gopich IV et al (2007) Effect of flexibility and cis residues in single-molecule FRET studies of polyproline. Proc Natl Acad Sci U S A 104:18964–18969. https://doi.org/10.1073/pnas.0709567104

    Article  PubMed  PubMed Central  Google Scholar 

  59. Camley BA, Brown FLH, Lipman EA (2009) Förster transfer outside the weak-excitation limit. J Chem Phys 131:104509. https://doi.org/10.1063/1.3230974

    Article  CAS  Google Scholar 

  60. Makarov DE, Plaxco KW (2009) Measuring distances within unfolded biopolymers using fluorescence resonance energy transfer: the effect of polymer chain dynamics on the observed fluorescence resonance energy transfer efficiency. J Chem Phys 131:85105. https://doi.org/10.1063/1.3212602

    Article  CAS  Google Scholar 

  61. Santoso Y, Torella JP, Kapanidis AN (2010) Characterizing single-molecule FRET dynamics with probability distribution analysis. ChemPhysChem 11:2209–2219. https://doi.org/10.1002/cphc.201000129

    Article  CAS  PubMed  Google Scholar 

  62. Torella JP, Holden SJ, Santoso Y et al (2011) Identifying molecular dynamics in single-molecule fret experiments with burst variance analysis. Biophys J 100:1568–1577. https://doi.org/10.1016/j.bpj.2011.01.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gopich IV, Szabo A (2005) Photon counting histograms for diffusing fluorophores. J Phys Chem B 109:17683–17688. https://doi.org/10.1021/jp052345f

    Article  CAS  PubMed  Google Scholar 

  64. Deniz AA, Laurence TA, Dahan M et al (2001) Ratiometric single-molecule studies of freely diffusing biomolecules. Annu Rev Phys Chem 53:233–253. https://doi.org/10.1146/annurev.physchem.54.011002.103816

    Article  CAS  Google Scholar 

  65. Berezhkovskii AM, Szabo A, Weiss GH (1999) Theory of single-molecule fluorescence spectroscopy of two-state systems. J Chem Phys 110:9145. https://doi.org/10.1063/1.478836

    Article  CAS  Google Scholar 

  66. Fischer W, Meier-Hellstern K (1993) The Markov-modulated Poisson process (MMPP) cookbook. Perform Eval 18:149–171. https://doi.org/10.1016/0166-5316(93)90035-S

    Article  Google Scholar 

  67. D’Agostini G (2003) Bayesian reasoning in data analysis - a critical introduction. World Scientific Publishing Co. Ltd., Singapore

    Book  Google Scholar 

  68. Chung HS, Cellmer T, Louis JM, Eaton WA (2013) Measuring ultrafast protein folding rates from photon-by-photon analysis of single molecule fluorescence trajectories. Chem Phys 422:229–237. https://doi.org/10.1016/j.chemphys.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  69. Chung HS, Louis JM, Eaton WA (2009) Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories. Proc Natl Acad Sci U S A 106:11837–11844. https://doi.org/10.1073/pnas.0901178106

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chung HS, Piana-Agostinetti S, Shaw DE, Eaton WA (2015) Structural origin of slow diffusion in protein folding. Science 349:1504–1510. https://doi.org/10.1126/science.aab1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chung HS, McHale K, Louis JM, Eaton WA (2012) Single-molecule fluorescence experiments determine protein folding transition path times. Science 335:981–984. https://doi.org/10.1126/science.1215768

    Article  CAS  PubMed  Google Scholar 

  72. Chung HS, Eaton WA (2013) Single-molecule fluorescence probes dynamics of barrier crossing. Nature 502:685–688. https://doi.org/10.1038/nature12649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Truex K, Chung HS, Louis JM, Eaton WA (2015) Testing landscape theory for biomolecular processes with single molecule fluorescence spectroscopy. Phys Rev Lett 115:18101. https://doi.org/10.1103/PhysRevLett.115.018101

    Article  CAS  Google Scholar 

  74. Basché T, Moerner WE, Orrit M, Talon H (1992) Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys Rev Lett 69:1516–1519. https://doi.org/10.1103/PhysRevLett.69.1516

    Article  PubMed  Google Scholar 

  75. Gopich IV, Nettels D, Schuler B, Szabo A (2009) Protein dynamics from single-molecule fluorescence intensity correlation functions. J Chem Phys 131:95102. https://doi.org/10.1063/1.3212597

    Article  CAS  Google Scholar 

  76. Hummer G, Szabo A (2017) Dynamics of the orientational factor in fluorescence resonance energy transfer. J Phys Chem B 121:3331–3339. https://doi.org/10.1021/acs.jpcb.6b08345

    Article  CAS  PubMed  Google Scholar 

  77. Gopich IV, Szabo A (2012) Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc Natl Acad Sci U S A 109:7747–7752. https://doi.org/10.1073/pnas.1205120109

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chung HS, Louis JM, Gopich IV (2016) Analysis of fluorescence lifetime and energy transfer efficiency in single-molecule photon trajectories of fast-folding proteins. J Phys Chem B 120:680–699. https://doi.org/10.1021/acs.jpcb.5b11351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chung HS, Meng F, Kim J-Y et al (2017) Oligomerization of the tetramerization domain of p53 probed by two- and three-color single-molecule FRET. Proc Natl Acad Sci U S A 114:E6812–E6821

    Article  CAS  Google Scholar 

  80. Kalinin S, Sisamakis E, Magennis SW et al (2010) On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits. J Phys Chem B 114:6197–6206. https://doi.org/10.1021/jp100025v

    Article  CAS  PubMed  Google Scholar 

  81. Ryden T (1996) An EM algorithm for estimation in Markov-modulated Poisson processes. Comput Stat Data An 21:431–447

    Article  Google Scholar 

Download references

Acknowledgments

We thank Attila Szabo for many helpful discussions and comments. This work was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Gopich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gopich, I.V., Chung, H.S. (2022). Theory and Analysis of Single-Molecule FRET Experiments. In: Muñoz, V. (eds) Protein Folding. Methods in Molecular Biology, vol 2376. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1716-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1716-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1715-1

  • Online ISBN: 978-1-0716-1716-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics