Skip to main content

Detection of HAC1 mRNA Splicing by RT-PCR in Saccharomyces cerevisiae

  • Protocol
  • First Online:
The Unfolded Protein Response

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2378))

Abstract

HAC1 mRNA remains translationally repressed in the cytoplasm of the budding yeast Saccharomyces cerevisiae. Under conditions of cellular stress, a dual kinase RNase IRE1 (Inositol Requiring Enzyme-1) cleaves out an intervening sequence from the HAC1 mRNA. Cleaved mRNAs are then ligated by tRNA ligase, thus generating a spliced mRNA that translates an active transcription factor. This unconventional splicing of HAC1 mRNA in the cytoplasm is a molecular marker for various cellular stresses including oxidative stress and endoplasmic reticulum (ER) stress. This article describes a PCR-based protocol to detect the HAC1 mRNA splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zimmermann R, Eyrisch S, Ahmad M, Helms V (2011) Protein translocation across the ER membrane. Biochim Biophys Acta 1808:912–924

    Article  CAS  PubMed  Google Scholar 

  2. Schwarz DS, Blower MD (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 73:79–94

    Article  CAS  PubMed  Google Scholar 

  3. Braakman I, Hebert DN (2013) Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5:a013201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hebert DN, Molinari M (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 87:1377–1408

    Article  CAS  PubMed  Google Scholar 

  5. Hampton RY (2002) ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 14:476–482

    Article  CAS  PubMed  Google Scholar 

  6. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  CAS  PubMed  Google Scholar 

  7. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  8. Lai E, Teodoro T, Volchuk A (2007) Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 22:193–201

    CAS  Google Scholar 

  9. Mannan MA, Shadrick WR, Biener G, Shin BS, Anshu A, Raicu V, Frick DN, Dey M (2013) An ire1-phk1 chimera reveals a dispensable role of autokinase activity in endoplasmic reticulum stress response. J Mol Biol 425:2083–2099

    Article  CAS  PubMed  Google Scholar 

  10. Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, Shokat KM, Stroud RM, Walter P (2009) The unfolded protein response signals through high-order assembly of Ire1. Nature 457:687–693

    Article  CAS  PubMed  Google Scholar 

  11. Lee KP, Dey M, Neculai D, Cao C, Dever TE, Sicheri F (2008) Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing. Cell 132:89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kosmaczewski SG, Edwards TJ, Han SM, Eckwahl MJ, Meyer BI, Peach S, Hesselberth JR, Wolin SL, Hammarlund M (2014) The RtcB RNA ligase is an essential component of the metazoan unfolded protein response. EMBO Rep 15:1278–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    Article  CAS  PubMed  Google Scholar 

  14. Sidrauski C, Cox JS, Walter P (1996) tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87:405–413

    Article  CAS  PubMed  Google Scholar 

  15. Cox JS, Shamu CE, Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:1197–1206

    Article  CAS  PubMed  Google Scholar 

  16. Baird TD, Wek RC (2012) Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 3:307–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    Article  CAS  PubMed  Google Scholar 

  18. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anshu A, Mannan MA, Chakraborty A, Chakrabarti S, Dey M (2015) A novel role for protein kinase Kin2 in regulating HAC1 mRNA translocation, splicing, and translation. Mol Cell Biol 35:199–210

    Article  CAS  PubMed  Google Scholar 

  20. Sathe L, Bolinger C, Mannan MA, Dever TE, Dey M (2015) Evidence that base-pairing interaction between intron and mRNA leader sequences inhibits initiation of HAC1 mRNA translation in yeast. J Biol Chem 290:21821–21832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghosh C, Sathe L, Paprocki JD, Raicu V, Dey M (2018) Adaptation to endoplasmic reticulum stress requires transphosphorylation within the activation loop of protein kinases Kin1 and Kin2, orthologs of human microtubule affinity-regulating kinase. Mol Cell Biol 38:e00266–e00218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant to M.D. from the U.S. National Institutes of Health (1R01GM124183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusudan Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Uppala, J.K., Dey, M. (2022). Detection of HAC1 mRNA Splicing by RT-PCR in Saccharomyces cerevisiae . In: Pérez-Torrado, R. (eds) The Unfolded Protein Response. Methods in Molecular Biology, vol 2378. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1732-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1732-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1731-1

  • Online ISBN: 978-1-0716-1732-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics