Skip to main content

Ex Vivo and In Vitro Methods for Detection of Bioactive Staphylococcal Enterotoxins

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2393))

Abstract

Staphylococcus aureus is a major bacterial cause of clinical infections and foodborne illnesses.

Through the synthesis of a group of Staphylococcal enterotoxins (SEs), gastroenteritis occurs and the SEs function as superantigens to massively activate T cells. The ability to rapidly detect and quantify SEs is imperative in order to learn the causes of staphylococcal outbreaks and to stop similar outbreaks in the future. Also, the ability to discern active toxin is essential for development of food treatment and processing methods. Here, we discuss the various methodologies for detection and analysis of SEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis 17:7–15. https://doi.org/10.3201/eid1701.P11101

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hui J, Cao Y, Xiao F, Zhang J, Li H, Hu F (2008) Staphylococcus aureus enterotoxin C2 mutants: biological activity assay in vitro. J Ind Microbiol Biotechnol 35:975–980. https://doi.org/10.1007/s10295-008-0372-3

    Article  CAS  PubMed  Google Scholar 

  3. Park CE, Akhtar M, Rayman MK (1992) Nonspecific reactions of a commercial enzyme-linked immunosorbent assay kit (TECRA) for detection of staphylococcal enterotoxins in foods. Appl Environ Microbiol 58:2509–2512

    Article  CAS  Google Scholar 

  4. Fujikawa H, Igarashi H (1988) Rapid latex agglutination test for detection of staphylococcal enterotoxins A to E that uses high-density latex particles. Appl Environ Microbiol 54:2345–2348

    Article  CAS  Google Scholar 

  5. Hu J, Lin L, Chen M, Yan W (2018) Modeling for predicting the time to detection of staphylococcal enterotoxin a in cooked chicken product. Front Microbiol 9:1536. https://doi.org/10.3389/fmicb.2018.01536

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rajkovic A, Tomasevic I, De Meulenaer B, Devlieghere F (2017) The effect of pulsed UV light on Escherichia coli O157:H7, Listeria monocytogenes, salmonella typhimurium, Staphylococcus aureus and staphylococcal enterotoxin a on sliced fermented salami and its chemical quality. Food Control 73:829–837

    Article  CAS  Google Scholar 

  7. Bergdoll MS (1988) Monkey feeding test for staphylococcal enterotoxin. Methods Enzymol 165:324–333. https://doi.org/10.1016/s0076-6879(88)65048-8

    Article  CAS  PubMed  Google Scholar 

  8. Bennett RW (2005) Staphylococcal enterotoxin and its rapid identification in foods by enzyme-linked immunosorbent assay-based methodology. J Food Prot 68:1264–1270. https://doi.org/10.4315/0362-028x-68.6.1264

    Article  CAS  PubMed  Google Scholar 

  9. Bergdoll MS, Borja CR, Robbins RN, Weiss KF (1971) Identification of enterotoxin E. Infect Immun 4:593–595

    Article  CAS  Google Scholar 

  10. Bavari S, Hunt RE, Ulrich RG (1995) Divergence of human and nonhuman primate lymphocyte responses to bacterial superantigens. Clin Immunol Immunopathol 76:248–254. https://doi.org/10.1006/clin.1995.1123

    Article  CAS  PubMed  Google Scholar 

  11. Hufnagle WO, Tremaine MT, Betley MJ (1991) The carboxyl-terminal region of staphylococcal enterotoxin type A is required for a fully active molecule. Infect Immun 59:2126–2134

    Article  CAS  Google Scholar 

  12. Rasooly R, Do PM (2009) In vitro cell-based assay for activity analysis of staphylococcal enterotoxin A in food. FEMS Immunol Med Microbiol 56:172–178. https://doi.org/10.1111/j.1574-695X.2009.00561.x

    Article  CAS  PubMed  Google Scholar 

  13. Rasooly R, Do P, Hernlem BJ (2017) Interleukin 2 secretion by T cells for detection of biologically active staphylococcal enterotoxin type E. J Food Prot:1857–1862. https://doi.org/10.4315/0362-028X.JFP-17-196

  14. Rasooly R, Do P, He X, Hernlem B (2018) Alternative to animal use for detecting biologically active Staphylococcal enterotoxin type A. Toxins (Basel) 10:540. https://doi.org/10.3390/toxins10120540

    Article  CAS  Google Scholar 

  15. Rasooly R, Hernlem BJ (2014) Quantitative analysis of staphylococcus enterotoxin A by differential expression of IFN-gamma in splenocyte and CD4(+) T-cells. Sensors (Basel) 14:8869–8876. https://doi.org/10.3390/s140508869

    Article  CAS  Google Scholar 

  16. Rasooly R, Hernlem B (2012) TNF as biomarker for rapid quantification of active Staphylococcus enterotoxin A in food. Sensors (Basel) 12:5978–5985. https://doi.org/10.3390/s120505978

    Article  CAS  Google Scholar 

  17. Rasooly R, Hernlem BJ (2012) CD154 as a potential early molecular biomarker for rapid quantification analysis of active Staphylococcus enterotoxin A. FEMS Immunol Med Microbiol 64:169–174. https://doi.org/10.1111/j.1574-695X.2011.00874.x

    Article  CAS  PubMed  Google Scholar 

  18. Rasooly R, Do P, Hernlem B (2016) Sensitive, rapid, quantitative and in vitro method for the detection of biologically active Staphylococcal enterotoxin type E. Toxins (Basel) 8:150. https://doi.org/10.3390/toxins8050150

    Article  CAS  Google Scholar 

  19. Rasooly R, Do P, He X, Hernlem B (2017) TCR-Vβ8 as alternative to animal testing for quantifying active SEE. J Environ Anal Toxicol 7:1–6. https://doi.org/10.4172/2161-0525.1000527

    Article  Google Scholar 

  20. Rasooly R, Do P, He X, Hernlem B (2019) T cell receptor Vbeta9 in method for rapidly quantifying active Staphylococcal enterotoxin type-A without live animals. Toxins (Basel) 11:399. https://doi.org/10.3390/toxins11070399

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuven Rasooly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rasooly, R., Do, P., Hernlem, B. (2022). Ex Vivo and In Vitro Methods for Detection of Bioactive Staphylococcal Enterotoxins. In: Ossandon, M.R., Baker, H., Rasooly, A. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2393. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1803-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1803-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1802-8

  • Online ISBN: 978-1-0716-1803-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics