Skip to main content

Global Comparative Label-Free Yeast Proteome Analysis by LC-MS/MS After High-pH Reversed-Phase Peptide Fractionation Using Solid-Phase Extraction Cartridges

  • Protocol
  • First Online:
Plant Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2396))

Abstract

Discovery-driven comparative proteomics employing the bottom-up strategy with label-free quantification on high-resolution mass analyzers like an Orbitrap in a hybrid instrument has the capacity to reveal unique biological processes in the context of plant metabolic engineering. However, proteins are very heterogeneous in nature with a wide range of expression levels, and overall coverage may be suboptimal regarding both the number of protein identifications and sequence coverage of the identified proteins using conventional data-dependent acquisitions without sample fractionation before online nanoflow liquid chromatography–mass spectrometry (LC–MS) and tandem mass spectrometry (MS/MS). In this chapter, we detail a simple and robust method employing high-pH reversed-phase (HRP) peptide fractionation using solid-phase extraction cartridges for label-free proteomic analyses. Albeit HRP fractionation separates peptides according to their hydrophobicity like the subsequent nanoflow gradient reversed-phased LC relying on low pH mobile phase, the two methods are orthogonal. Presented here as a protocol with yeast (Saccharomyces cerevisiae) as a frequently used model organism and hydrogen peroxide to exert cellular stress and survey its impact compared to unstressed control as an example, the described workflow can be adapted to a wide range of proteome samples for applications to plant metabolic engineering research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bassel GW, Gaudinier A, Brady SM, Hennig L, Rhee SY, De Smet I (2012) Systems analysis of plant functional, transcriptional, physical interaction, and metabolic networks. Plant Cell 24:3859–3875

    Article  CAS  Google Scholar 

  2. Jamil IN, Remali J, Azizan KA, Muhammad NAN, Arita M, Goh HH, Aizat WM (2020) Systematic multi-omics integration (MOI) approach in plant systems biology. Front Plant Sci 11:944

    Article  Google Scholar 

  3. Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17:121–127

    Article  CAS  Google Scholar 

  4. Mann M, Kulak NA, Nagaraj N, Cox J (2013) The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49:583–590

    Article  CAS  Google Scholar 

  5. Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ (2014) The one hour yeast proteome. Mol Cell Proteomics 13:339–347

    Article  CAS  Google Scholar 

  6. Chang-Wong T, Tang H-Y, Speicher DW (2009) Comparison of extensive protein fractionation and repetitive LC-MS/MS analyses on depth of analysis for complex proteomes. J Proteome Res 9:1032–1040

    PubMed Central  Google Scholar 

  7. Kuljanin M, Dieters-Castator DZ, Hess DA, Postovit L-M, Lajoie GA (2017) Comparison of sample preparation techniques for large-scale proteomics. Proteomics 17:1600337

    Article  Google Scholar 

  8. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protocols 2:1896–1906

    Article  CAS  Google Scholar 

  9. CCS Center of Excellence (CoE) Application Scientists (2019) SOLA high pH reversed-phase peptide fractionation by offline SPE. Thermo Fischer Scientific application brief 21959

    Google Scholar 

  10. Pandey P, Zaman K, Prokai L, Shulaev V (2021) Comparative proteomics analysis reveals unique early signaling response of Saccharomyces cerevisiae to oxidants with different mechanism of action. Int J Mol Sci 22:167

    Article  CAS  Google Scholar 

  11. Jamuczak AE, Eyers CE, Schwartz JM, Grant CM, Hubbard SJ (2015) Quantitative proteomics and network analysis of SSA1 and SSB1 deletion mutants reveals robustness of chaperone HSP70 network in Saccharomyces cerevisiae. Proteomics 15:3126–3139

    Article  Google Scholar 

  12. Tang X, Feng H, Zhang J, Chen WN (2013) Comparative proteomics analysis of engineered saccharomyces cerevisiae with enhanced biofuel precursor production. PLoS One 8:e84661

    Article  Google Scholar 

  13. Storey AJ, Hardman RE, Byrum SD, Mackintosh SG, Edmondson RD, Wahls WP, Tackett AJ, Lewis JA (2020) Accurate and sensitive quantitation of the dynamic heat shock proteome using tandem mass tags. J Proteome Res 19:1183–1195

    Article  CAS  Google Scholar 

  14. Brownridge P, Holman SW, Gaskell SJ, Grant CM, Harman VM, Hubbard SJ, Lanthaler K, Lawless C, O’cualain R, Sims P, Watkins R, Beynon RJ (2011) Global absolute quantification of a proteome: challenges in the deployment of a QconCAT strategy. Proteomics 11:2957–2970

    Article  CAS  Google Scholar 

  15. Gevaert K, Impens F, Ghesquiere B, Van Damme P, Lambrechts A, Vandekerckhove J (2008) Stable isotopic labeling in proteomics. Proteomics 8:4873–4885

    Article  CAS  Google Scholar 

  16. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553

    Article  CAS  Google Scholar 

  17. Hendrickson EL, Xia Q, Wang T, Leigh JA, Hackett M (2006) Comparison of spectral counting and metabolic stable isotope labeling for use with quantitative microbial proteomics. Analyst 131:1335–1341

    Article  CAS  Google Scholar 

  18. Wilm M (2009) Quantitative proteomics in biological research. Proteomics 9:4590–4605

    Article  CAS  Google Scholar 

  19. Nahnsen S, Bielow C, Reinert K, Kohlbacher O (2013) Tools for label-free peptide quantification. Mol Cell Proteomics 12:549–556

    Article  CAS  Google Scholar 

  20. Talamantes T, Ughy B, Domonkos I, Kis M, Gombos Z, Prokai L (2014) Label-free LC–MS/MS identification of phosphatidylglycerol-regulated proteins in Synechocystis sp. PCC6803. Proteomics 14:1053–1057

    Article  CAS  Google Scholar 

  21. Kotimoole CN, Prasad TSK (2019) Plant proteome databases and bioinformatic tools: an expert review and comparative insights. OMICS 23:190–206

    Article  Google Scholar 

  22. Spura J, Reimer LC, Wieloch P, Schreiber K, Buchinger S, Schomburg D (2009) A method for enzyme quenching in microbial metabolome analysis successfully applied to gram-positive and gram-negative bacteria and yeast. Anal Biochem 394:192–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Prokai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zaman, K., Pandey, P., Shulaev, V., Prokai, L. (2022). Global Comparative Label-Free Yeast Proteome Analysis by LC-MS/MS After High-pH Reversed-Phase Peptide Fractionation Using Solid-Phase Extraction Cartridges. In: Shulaev, V. (eds) Plant Metabolic Engineering. Methods in Molecular Biology, vol 2396. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1822-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1822-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1821-9

  • Online ISBN: 978-1-0716-1822-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics