Skip to main content

High Spatial Resolution Luciferase Imaging of the Arabidopsis thaliana Circadian Clock

  • Protocol
  • First Online:
Plant Circadian Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2398))

Abstract

The A. thaliana circadian clock is an example of a gene network that generates rich temporal and spatial dynamics. Bioluminescent imaging has proven a powerful method to help dissect the genetic mechanisms that generate oscillations of gene expression over the course of the day. However, its use for the study of spatial regulation is often limited by resolution. Here, we describe a modified luciferase imaging method for the study of the Arabidopsis circadian clock across the plant at sub-tissue-level resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenwood M, Locke JC (2020) The circadian clock coordinates plant development through specificity at the tissue and cellular level. Curr Opin Plant Biol 53:65–72. https://doi.org/10.1016/j.pbi.2019.09.004

    Article  PubMed  Google Scholar 

  2. Bordage S, Sullivan S, Laird J et al (2016) Organ specificity in the plant circadian system is explained by different light inputs to the shoot and root clocks. New Phytol 212:136–149. https://doi.org/10.1111/nph.14024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greenwood M, Domijan M, Gould PD et al (2019) Coordinated circadian timing through the integration of local inputs in Arabidopsis thaliana. PLoS Biol 17:e3000407. https://doi.org/10.1371/journal.pbio.3000407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Para A, Farré EM, Imaizumi T et al (2007) PRR3 is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. Plant Cell 19:3462–3473. https://doi.org/10.1105/tpc.107.054775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Endo M, Shimizu H, Nohales MA et al (2014) Tissue-specific clocks in Arabidopsis show asymmetric coupling. Nature 515:419–422. https://doi.org/10.1038/nature13919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee HG, Seo PJ (2018) Dependence and independence of the root clock on the shoot clock in Arabidopsis. Genes Genomics 40:1063–1068. https://doi.org/10.1007/s13258-018-0710-4

    Article  CAS  PubMed  Google Scholar 

  7. Edwards J, Martin AP, Andriunas F et al (2010) GIGANTEA is a component of a regulatory pathway determining wall ingrowth deposition in phloem parenchyma transfer cells of Arabidopsis thaliana. Plant J 63:651–661. https://doi.org/10.1111/j.1365-313X.2010.04269.x

    Article  CAS  PubMed  Google Scholar 

  8. Shimizu H, Katayama K, Koto T et al (2015) Decentralized circadian clocks process thermal and photoperiodic cues in specific tissues. Nat Plants 1:15163. https://doi.org/10.1038/nplants.2015.163

    Article  PubMed  Google Scholar 

  9. Shimizu H, Torii K, Araki T, Endo M (2016) Importance of epidermal clocks for regulation of hypocotyl elongation through PIF4 and IAA29. Plant Signal Behav 11:e1143999. https://doi.org/10.1080/15592324.2016.1143999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Millar AJ, Short SR, Chua NH, Kay SA (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4:1075–1087. https://doi.org/10.1105/tpc.4.9.1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McClung CR, Xie Q (2014) Measurement of luciferase rhythms. Methods Mol Biol 1158. https://doi.org/10.1007/978-1-4939-0700-7_1

  12. Takahashi N, Hirata Y, Aihara K, Mas P (2015) A hierarchical multi-oscillator network orchestrates the Arabidopsis circadian system. Cell 163:148–159. https://doi.org/10.1016/j.cell.2015.08.062

    Article  CAS  PubMed  Google Scholar 

  13. Yakir E, Hassidim M, Melamed-Book N et al (2011) Cell autonomous and cell-type specific circadian rhythms in Arabidopsis. Plant J 68:520–531. https://doi.org/10.1111/j.1365-313X.2011.04707.x

    Article  CAS  PubMed  Google Scholar 

  14. Gould PD, Domijan M, Greenwood M et al (2018) Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression. Elife 7:e31700. https://doi.org/10.7554/eLife.31700

    Article  PubMed  PubMed Central  Google Scholar 

  15. Román Á, Golz JF, Webb AA et al (2019) Combining GAL4 GFP enhancer trap with split luciferase to measure spatiotemporal promoter activity in Arabidopsis. Plant J:tpj.14603. https://doi.org/10.1111/tpj.14603

  16. Muranaka T, Kubota S, Oyama T (2013) A single-cell bioluminescence imaging system for monitoring cellular gene expression in a plant body. Plant Cell Physiol 54:2085–2093. https://doi.org/10.1093/pcp/pct131

    Article  CAS  PubMed  Google Scholar 

  17. Wenden B, Toner DLK, Hodge SK et al (2012) Spontaneous spatiotemporal waves of gene expression from biological clocks in the leaf. Proc Natl Acad Sci U S A 109:6757–6762. https://doi.org/10.1073/pnas.1118814109

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fukuda H, Nakamichi N, Hisatsune M et al (2007) Synchronization of plant circadian oscillators with a phase delay effect of the vein network. Phys Rev Lett 99:098102. https://doi.org/10.1103/PhysRevLett.99.098102

    Article  CAS  PubMed  Google Scholar 

  19. Fukuda H, Ukai K, Oyama T (2012) Self-arrangement of cellular circadian rhythms through phase-resetting in plant roots. Phys Rev E 86:041917. https://doi.org/10.1103/PhysRevE.86.041917

    Article  CAS  Google Scholar 

  20. Litthauer S, Battle MW, Lawson T, Jones MA (2015) Phototropins maintain robust circadian oscillation of PSII operating efficiency under blue light. Plant J 83:1034–1045. https://doi.org/10.1111/tpj.12947

    Article  CAS  PubMed  Google Scholar 

  21. Gould PD, Diaz P, Hogben C et al (2009) Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants. Plant J 58:893–901. https://doi.org/10.1111/j.1365-313X.2009.03819.x

    Article  CAS  PubMed  Google Scholar 

  22. Rees H, Duncan S, Gould P et al (2019) A high-throughput delayed fluorescence method reveals underlying differences in the control of circadian rhythms in Triticum aestivum and Brassica napus. Plant Methods 15:51. https://doi.org/10.1186/s13007-019-0436-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zielinski T, Moore AM, Troup E et al (2014) Strengths and limitations of period estimation methods for circadian data. PLoS One 9:e96462. https://doi.org/10.1371/journal.pone.0096462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tindall AJ (2016) Identification & characterisation of transcription factors affecting the circadian system of Arabidopsis thaliana. University of Liverpool, Liverpool

    Google Scholar 

Download references

Acknowledgments

M.G. and J.L. are funded by the Gatsby Charitable Foundation (grant number GAT3395/GLC). A.H. is funded by the BBSRC (grant number BB/P016774/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. W. Locke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Greenwood, M., Hall, A.J.W., Locke, J.C.W. (2022). High Spatial Resolution Luciferase Imaging of the Arabidopsis thaliana Circadian Clock. In: Staiger, D., Davis, S., Davis, A.M. (eds) Plant Circadian Networks. Methods in Molecular Biology, vol 2398. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1912-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1912-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1911-7

  • Online ISBN: 978-1-0716-1912-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics