Skip to main content

Methods and Applications of Campenot Trichamber Neuronal Cultures for the Study of Neuroinvasive Viruses

  • Protocol
  • First Online:
Axonal Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2431))

Abstract

The development of compartmentalized neuron culture systems has been invaluable in the study of neuroinvasive viruses, including the alpha herpesviruses Herpes Simplex Virus 1 (HSV-1) and Pseudorabies Virus (PRV). This chapter provides updated protocols for assembling and culturing rodent embryonic superior cervical ganglion (SCG) and dorsal root ganglion (DRG) neurons in Campenot trichamber cultures. In addition, we provide several illustrative examples of the types of experiments that are enabled by Campenot cultures: (1) Using fluorescence microscopy to investigate axonal outgrowth/extension through the chambers, and alpha herpesvirus infection, intracellular trafficking, and cell-cell spread via axons. (2) Using correlative fluorescence microscopy and cryo electron tomography to investigate the ultrastructure of virus particles trafficking in axons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koyuncu OO, Hogue IB, Enquist LW (2013) Virus infections in the nervous system. Cell Host Microbe 13:379–393

    Article  CAS  Google Scholar 

  2. Koyuncu OO, Enquist LW, Engel EA (2021) Invasion of the nervous system. Curr Issues Mol Biol 41:1–62

    Article  Google Scholar 

  3. Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H et al (2016) Microbes and Alzheimer’s disease. J Alzheimers Dis 51:979–984

    Article  Google Scholar 

  4. Card JP, Enquist LW (2012) Use and visualization of neuroanatomical viral transneuronal tracers. In: Visualization techniques. Humana Press, Totowa, NJ, pp 225–268

    Chapter  Google Scholar 

  5. Ugolini G (2010) Advances in viral transneuronal tracing. J Neurosci Methods 194:2–20

    Article  Google Scholar 

  6. Feldberg W, Gaddum JH (1934) The chemical transmitter at synapses in a sympathetic ganglion. J Physiol 81:305–319

    Article  CAS  Google Scholar 

  7. Amendola J, Boumedine N, Sangiardi M, El Far O (2015) Optimization of neuronal cultures from rat superior cervical ganglia for dual patch recording. Sci Rep 5:14455

    Article  CAS  Google Scholar 

  8. Nascimento AI, Mar FM, Sousa MM (2018) The intriguing nature of dorsal root ganglion neurons: linking structure with polarity and function. Prog Neurobiol 168:86–103

    Article  Google Scholar 

  9. He Y, Baas PW (2003) Growing and working with peripheral neurons. Methods Cell Biol 71:17–35

    Article  Google Scholar 

  10. Hogue IB, Bosse JB, Engel EA, Scherer J, Hu J-R, Del Rio T et al (2015) Fluorescent protein approaches in alpha herpesvirus research. Viruses 7:5933–5961

    Article  CAS  Google Scholar 

  11. Taylor MP, Kobiler O, Enquist LW (2012) Alphaherpesvirus axon-to-cell spread involves limited virion transmission. Proc Natl Acad Sci U S A 109:17046–17051

    Article  CAS  Google Scholar 

  12. Smith GA, Gross SP, Enquist LW (2001) Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc Natl Acad Sci U S A 98:3466–3470

    Article  CAS  Google Scholar 

  13. Koyuncu OO, MacGibeny MA, Hogue IB, Enquist LW (2017) Compartmented neuronal cultures reveal two distinct mechanisms for alpha herpesvirus escape from genome silencing. PLoS Pathog 13:e1006608

    Article  Google Scholar 

  14. Wojaczynski GJ, Engel EA, Steren KE, Enquist LW, Patrick Card J (2014) The neuroinvasive profiles of H129 (herpes simplex virus type 1) recombinants with putative anterograde-only transneuronal spread properties. Brain Struct Funct 220(3):1395–1420

    Article  Google Scholar 

  15. Scherer J, Yaffe ZA, Vershinin M, Enquist LW (2016) Dual-color herpesvirus capsids discriminate inoculum from progeny and reveal axonal transport dynamics. J Virol 90:9997–10006

    Article  CAS  Google Scholar 

  16. Kratchmarov R, Taylor MP, Enquist LW (2012) Making the case: married versus separate models of alphaherpes virus anterograde transport in axons. Rev Med Virol 22:378–391

    Article  CAS  Google Scholar 

  17. Danastas K, Cunningham AL, Miranda-Saksena M (2020) The use of microfluidic neuronal devices to study the anterograde axonal transport of herpes simplex Virus-1. Methods Mol Biol 2060:409–418

    Article  CAS  Google Scholar 

  18. Fenstermacher SJ, Pazyra-Murphy MF, Segal RA (2015) Campenot cultures and microfluidics provide complementary platforms for spatial study of dorsal root ganglia neurons. In: Biffi E (ed) Microfluidic and compartmentalized platforms for neurobiological research. Humana Press, New York, pp 105–124

    Chapter  Google Scholar 

  19. Wang Y, Wang S, Wu H, Liu X, Ma J, Khan MA et al (2020) Compartmentalized neuronal culture for viral transport research. Front Microbiol 11:1470

    Article  Google Scholar 

  20. Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A 74:4516–4519

    Article  CAS  Google Scholar 

  21. Ch’ng TH, Enquist LW (2005) Neuron-to-cell spread of pseudorabies virus in a compartmented neuronal culture system. J Virol 79:10875–10889

    Article  Google Scholar 

  22. Curanović D, Ch’ng TH, Szpara M, Enquist LW (2009) Compartmented neuron cultures for directional infection by alpha herpesviruses. Curr Protoc Cell Biol 43(1):26–24

    Article  Google Scholar 

  23. Curanovic D, Lyman MG, Bou-Abboud C, Card JP, Enquist LW (2009) Repair of the UL21 locus in pseudorabies virus Bartha enhances the kinetics of retrograde, transneuronal infection in vitro and in vivo. J Virol 83:1173–1183

    Article  CAS  Google Scholar 

  24. Johnson BN, Lancaster KZ, Hogue IB, Meng F, Kong YL, Enquist LW et al (2015) 3D printed nervous system on a chip. Lab Chip 16:1393–1400

    Article  Google Scholar 

  25. Ch’ng TH, Flood EA, Enquist LW (2005) Culturing primary and transformed neuronal cells for studying pseudorabies virus infection. Methods Mol Biol 292:299–316

    PubMed  Google Scholar 

  26. Song R, Koyuncu OO, Greco TM, Diner BA, Cristea IM, Enquist LW (2016) Two modes of the axonal interferon response limit Alphaherpesvirus neuroinvasion. MBio 7:e02145–e02115

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Koyuncu OO, Perlman DH, Enquist LW (2013) Efficient retrograde transport of pseudorabies virus within neurons requires local protein synthesis in axons. Cell Host Microbe 13:54–66

    Article  CAS  Google Scholar 

  28. Koyuncu OO, Song R, Greco TM, Cristea IM, Enquist LW (2015) The number of alphaherpesvirus particles infecting axons and the axonal protein repertoire determines the outcome of neuronal infection. MBio 6:e00276–e00215

    Article  Google Scholar 

  29. Wu BW, Engel EA, Enquist LW (2014) Characterization of a replication-incompetent pseudorabies virus mutant lacking the sole immediate early gene IE180. MBio 5:e01850

    Article  CAS  Google Scholar 

  30. Nagel C-H, Döhner K, Binz A, Bauerfeind R, Sodeik B (2012) Improper tagging of the non-essential small capsid protein VP26 impairs nuclear capsid egress of herpes simplex virus. PLoS One 7:e44177

    Article  CAS  Google Scholar 

  31. Szpara ML, Tafuri YR, Parsons L, Shreve JT, Engel EA, Enquist LW (2014) Genome sequence of the anterograde-spread-defective herpes simplex virus 1 strain MacIntyre. Genome Announc 2:e01161–e01114

    Article  Google Scholar 

  32. Kramer T, Greco TM, Taylor MP, Ambrosini AE, Cristea IM, Enquist LW (2012) Kinesin-3 mediates axonal sorting and directional transport of alphaherpesvirus particles in neurons. Cell Host Microbe 12:806–814

    Article  CAS  Google Scholar 

  33. Scherer J, Hogue IB, Yaffe ZA, Tanneti NS, Winer BY, Vershinin M et al (2020) A kinesin-3 recruitment complex facilitates axonal sorting of enveloped alpha herpesvirus capsids. PLoS Pathog 16(1):e1007985

    Article  Google Scholar 

  34. Antinone SE, Zaichick SV, Smith GA (2010) Resolving the assembly state of herpes simplex virus during axon transport by live-cell imaging. J Virol 84:13019–13030

    Article  CAS  Google Scholar 

  35. Taylor MP, Kratchmarov R, Enquist LW (2013) Live cell imaging of alphaherpes virus anterograde transport and spread. J Vis Exp (78):e50723

    Google Scholar 

  36. Bosse JB, Tanneti NS, Hogue IB, Enquist LW (2015) Open LED illuminator: a simple and inexpensive LED illuminator for fast multicolor particle tracking in neurons. PLoS One 10:e0143547

    Article  Google Scholar 

  37. Hogue IB, Bosse JB, Hu J-R, Thiberge SY, Enquist LW (2014) Cellular mechanisms of alpha herpesvirus egress: live cell fluorescence microscopy of pseudorabies virus exocytosis. PLoS Pathog 10:e1004535

    Article  Google Scholar 

  38. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51

    Article  Google Scholar 

  39. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  CAS  Google Scholar 

  40. Ibiricu I, Huiskonen JT, Döhner K, Bradke F, Sodeik B, Grünewald K (2011) Cryo electron tomography of herpes simplex virus during axonal transport and secondary envelopment in primary neurons. PLoS Pathog 7:e1002406

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to especially thank Dr. Lynn Enquist, Princeton University, for his ongoing mentorship. Much of this work would not have been possible without his generosity, guidance, and patience, which directly contributed to the development of these methods. This work was supported by NIH grants K22 AI123159 (I.B.H.), R21 AI146952 (M.P.T.), P40 OD010996 (E.A.E.), and P41 GM103832 (W.C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew P. Taylor or Ian B. Hogue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tierney, W.M. et al. (2022). Methods and Applications of Campenot Trichamber Neuronal Cultures for the Study of Neuroinvasive Viruses. In: Vagnoni, A. (eds) Axonal Transport. Methods in Molecular Biology, vol 2431. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1990-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1990-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1989-6

  • Online ISBN: 978-1-0716-1990-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics