Skip to main content

Production of AAVs and Injection into the Spinal Cord

  • Protocol
  • First Online:
Contemporary Approaches to the Study of Pain

Part of the book series: Neuromethods ((NM,volume 178))

  • 796 Accesses

Abstract

Adeno-associated virus (AAV) vector–mediated gene transfer has become a widely applied tool in neurobiology. More recently, it has also become crucial in the analysis of somatosensory spinal circuits as it allows for the local restriction of transgene expression and determination of the onset of expression. The combination of recombinase-dependent AAV vectors with transgenic mice enables cell type-specific expression of any protein, within the limits of the genome size of wild-type (wt) AAVs (∼4700 nucleotides). Recombinase-dependent AAV vectors encoding for marker, sensor or effector proteins such as fluorescent proteins, calcium sensors or pharmacogenetic receptors and toxins can be used to label, monitor, or functionally manipulate recombinase-expressing spinal neurons. This allows interrogating the function of any genetically identifiable spinal neuron in specific somatosensory modalities such as itch or in different modalities of pain. Here, we first discuss the capabilities of AAV vectors and describe how to modify and use their properties. In the subsequent protocol we outline how to generate AAV vectors and how to deliver them into the spinal cord of mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gatto G et al (2019) Neuronal diversity in the somatosensory system: bridging the gap between cell type and function. Curr Opin Neurobiol 56:167–174

    Article  CAS  Google Scholar 

  2. Moehring F et al (2018) Uncovering the cells and circuits of touch in Normal and pathological settings. Neuron 100(2):349–360

    Article  CAS  Google Scholar 

  3. Peirs C, Seal RP (2016) Neural circuits for pain: recent advances and current views. Science 354(6312):578–584

    Article  CAS  Google Scholar 

  4. Foster E et al (2015) Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron 85(6):1289–1304

    Article  CAS  Google Scholar 

  5. Peirs C et al (2015) Dorsal horn circuits for persistent mechanical pain. Neuron 87(4):797–812

    Article  CAS  Google Scholar 

  6. Petitjean H et al (2019) Recruitment of Spinoparabrachial neurons by dorsal horn Calretinin neurons. Cell Rep 28(6):1429–1438 e4

    Article  CAS  Google Scholar 

  7. Petitjean H et al (2015) Dorsal horn Parvalbumin neurons are gate-keepers of touch-evoked pain after nerve injury. Cell Rep 13(6):1246–1257

    Article  CAS  Google Scholar 

  8. Fenno LE et al (2014) Targeting cells with single vectors using multiple-feature Boolean logic. Nat Methods 11(7):763–772

    Article  CAS  Google Scholar 

  9. Haenraets K et al (2017) Spinal nociceptive circuit analysis with recombinant adeno-associated viruses: the impact of serotypes and promoters. J Neurochem 142(5):721–733

    Article  CAS  Google Scholar 

  10. Tervo DG et al (2016) A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92(2):372–382

    Article  CAS  Google Scholar 

  11. Kugler S, Kilic E, Bahr M (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 10(4):337–347

    Article  CAS  Google Scholar 

  12. Juttner J et al (2019) Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat Neurosci 22(8):1345–1356

    Article  CAS  Google Scholar 

  13. Buenrostro JD et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218

    Article  CAS  Google Scholar 

  14. Buenrostro JD et al (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.1–21.29.9

    Article  Google Scholar 

  15. Mikuni T et al (2016) High-throughput, high-resolution mapping of protein localization in mammalian brain by in vivo genome editing. Cell 165(7):1803–1817

    Article  CAS  Google Scholar 

  16. Suzuki K et al (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149

    Article  CAS  Google Scholar 

  17. Haenraets K et al (2018) Adeno-associated virus-mediated transgene expression in genetically defined neurons of the spinal cord. J Vis Exp 135:57382

    Google Scholar 

  18. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74. https://doi.org/10.1099/0022-1317-36-1-59

    Article  CAS  PubMed  Google Scholar 

  19. DuBridge RB, Tang P, Hsia HC et al (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 7(1):379–387. https://doi.org/10.1128/mcb.7.1.379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reed SE, Staley EM, Mayginnes JP et al (2006) Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods 138(1-2):85–98. https://doi.org/10.1016/j.jviromet.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  21. Kuroda H, Kutner RH, Bazan NG, Reiser J (2009) Simplified lentivirus vector production in protein-free media using polyethylenimine-mediated transfection. J Virol Methods 157(2):113–121. https://doi.org/10.1016/j.jviromet.2008.11.021

    Article  CAS  PubMed  Google Scholar 

  22. Zolotukhin S, Byrne BJ, Mason E et al (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 6(6):973–985. https://doi.org/10.1038/sj.gt.3300938

    Article  CAS  PubMed  Google Scholar 

  23. Paterna JC, Moccetti T, Mura A et al (2000) Influence of promoter and WHV post-transcriptional regulatory element on AAV-mediated transgene expression in the rat brain. Gene Ther 7(15):1304–1311. https://doi.org/10.1038/sj.gt.3301221

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Wildner .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wildner, H., Paterna, JC., Haenraets, K. (2022). Production of AAVs and Injection into the Spinal Cord. In: Seal, R.P. (eds) Contemporary Approaches to the Study of Pain. Neuromethods, vol 178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2039-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2039-7_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2038-0

  • Online ISBN: 978-1-0716-2039-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics