Skip to main content

Measuring Glucose Consumption and Gluconeogenesis in 3D Human Tissue Cultures with Nanoliter Input Volumes

  • Protocol
  • First Online:
Autophagy and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2445))

  • 1364 Accesses

Abstract

Organotypic and microphysiological culture of primary human tissues and cancers has emerged as a powerful set of technologies that allow to faithfully mimic cellular metabolism and functions ex vivo. The predominant 3D culture methods include spheroids and microfluidic chips. These cultures use low cell numbers and culture volumes, which, however, poses important limitations for the available amounts of sample for downstream analyses. Here, we describe a detailed method for the measurement of glucose consumption dynamics in organotypic culture using a bienzymatic colorimetric assay that accurately quantifies glucose levels using nanoliter input volumes. As an example we utilize spheroids consisting of primary human hepatocytes. The assay has been carefully optimized and benchmarked and is compatible with both longitudinal and high-throughput screening in both static and perfused conditions. The method is straightforward and only requires a microplate reader capable of running absorbance kinetic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95. https://doi.org/10.1038/nrc2981

    Article  CAS  PubMed  Google Scholar 

  2. Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, Tan S, Tian Y, Rao S, Chen X, Tang Y, Su M, Luo X, Wang Y, Wang H, Zhou Y, Liao Q (2019) The roles of glucose metabolic reprogramming in chemo- and radio-resistance. J Exp Clin Cancer Res 38:218. https://doi.org/10.1186/s13046-019-1214-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee AS (2014) Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer 14:263–276. https://doi.org/10.1038/nrc3701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ha J, Guan KL, Kim J (2015) AMPK and autophagy in glucose/glycogen metabolism. Mol Asp Med 46:46–62. https://doi.org/10.1016/j.mam.2015.08.002

    Article  CAS  Google Scholar 

  5. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036. https://doi.org/10.1038/nature03029

    Article  CAS  PubMed  Google Scholar 

  6. Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845. https://doi.org/10.1038/nrm2236

    Article  CAS  PubMed  Google Scholar 

  7. Costa EC, Moreira AF, de Melo-Diogo D, Gaspar VM, Carvalho MP, Correia IJ (2016) 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv 34:1427–1441. https://doi.org/10.1016/j.biotechadv.2016.11.002

    Article  PubMed  Google Scholar 

  8. Ewart L, Dehne EM, Fabre K, Gibbs S, Hickman J, Hornberg E, Ingelman-Sundberg M, Jang KJ, Jones DR, Lauschke VM, Marx U, Mettetal JT, Pointon A, Williams D, Zimmermann WH, Newham P (2018) Application of microphysiological systems to enhance safety assessment in drug discovery. Annu Rev Pharmacol Toxicol 58:65–82. https://doi.org/10.1146/annurev-pharmtox-010617-052722

    Article  CAS  PubMed  Google Scholar 

  9. Shen JX, Youhanna S, Zandi Shafagh R, Kele J, Lauschke VM (2020) Organotypic and microphysiological models of liver, gut, and kidney for studies of drug metabolism, pharmacokinetics, and toxicity. Chem Res Toxicol 33:38–60. https://doi.org/10.1021/acs.chemrestox.9b00245

    Article  CAS  PubMed  Google Scholar 

  10. Kemas AM, Youhanna S, Zandi Shafagh R, Lauschke VM (2021) Insulin-dependent glucose consumption dynamics in 3D primary human liver cultures measured by a sensitive and specific glucose sensor with nanoliter input volume. FASEB J 35:e21305. https://doi.org/10.1096/fj.202001989RR

    Article  CAS  PubMed  Google Scholar 

  11. Iozzo P, Geisler F, Oikonen V, Mäki M, Takala T, Solin O, Ferrannini E, Knuuti J, Nuutila P (2002) Study, insulin stimulates liver glucose uptake in humans: an 18F-FDG PET study. J Nucl Med 44:682–689

    Google Scholar 

  12. Lu Y, Zhang G, Shen C, Uygun K, Yarmush ML, Meng Q (2012) A novel 3D liver organoid system for elucidation of hepatic glucose metabolism. Biotechnol Bioeng 109:595–604. https://doi.org/10.1002/bit.23349

    Article  CAS  PubMed  Google Scholar 

  13. Bell CC, Hendriks DFG, Moro SML, Ellis E, Walsh J, Renblom A, Fredriksson Puigvert L, Dankers AC, Jacobs F, Snoeys J, Sison-Young RL, Jenkins RE, Nordling Ã…, Mkrtchian S, Park BK, Kitteringham NR, Goldring CE, Lauschke VM, Ingelman-Sundberg M (2016) Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 6:25187. https://doi.org/10.1038/srep25187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kozyra M, Johansson I, Nordling Ã…, Ullah S, Lauschke VM, Ingelman-Sundberg M (2018) Human hepatic 3D spheroids as a model for steatosis and insulin resistance. Sci Rep 8:14297. https://doi.org/10.1038/s41598-018-32722-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y, Hess H (2020) Inhibitors in commercially available 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonate) affect enzymatic assays. Anal Chem 92:1502–1510. https://doi.org/10.1021/acs.analchem.9b04751

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in the laboratory is funded by the Swedish Research Council [grant agreement numbers: 2016-01153, 2016-01154, and 2019-01837] and by the Swedish Strategic Research Programmes in Diabetes (SFO Diabetes) and Stem Cells and Regenerative Medicine (SFO StratRegen).

Competing Interests

VML is CEO and shareholder of HepaPredict AB, cofounder and shareholder of PersoMedix AB and discloses consultancy work for Enginzyme AB. AMK does not have competing interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker M. Lauschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kemas, A.M., Lauschke, V.M. (2022). Measuring Glucose Consumption and Gluconeogenesis in 3D Human Tissue Cultures with Nanoliter Input Volumes. In: Norberg, H., Norberg, E. (eds) Autophagy and Cancer. Methods in Molecular Biology, vol 2445. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2071-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2071-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2070-0

  • Online ISBN: 978-1-0716-2071-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics