Skip to main content

A Bioluminescent Agrobacterium tumefaciens for Imaging Bacterial Metabolic Activity in Planta

  • Protocol
  • First Online:
Recombinant Proteins in Plants

Abstract

Bioluminescence enables the monitoring of spatiotemporal dynamics and activity of bacterial populations in planta. We here describe a procedure to use AgroLux, a bioluminescent Agrobacterium tumefaciens, as a tool to study bacterial responses upon agroinfiltration. The first method details how to transform bioluminescent AgroLux to carry binary plasmids of interests. Then, a simple agroinfiltration assay for in planta imaging of bioluminescence signals is presented. AgroLux assays will increase our understanding of plant-Agrobacterium interactions and plant immunity and improve molecular farming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao Z, Zhang BS, Prescher JA (2018) Advances in bioluminescence imaging: new probes from old recipes. Curr Opin Chem Biol 45:148–156

    Article  CAS  Google Scholar 

  2. Fleiss A, Sarkisyan KS (2019) A brief review of bioluminescent systems. Curr Genet 65:877–882

    Article  CAS  Google Scholar 

  3. Soldan R, Sanguankiattichai N, Bach-Pages M, Bervoets I, Huang WE, Preston GM (2021) From macro to micro: a combined bioluminescence-fluorescence approach to monitor bacterial localization. Environ Microbiol 23:2070–2085

    Article  CAS  Google Scholar 

  4. Gregor C, Gwosch KC, Sahl SJ, Hell SW (2018) Strongly enhanced bacterial bioluminescence with the ilux operon for single-cell imaging. Proc Natl Acad Sci U S A 115:962–967

    Article  CAS  Google Scholar 

  5. Brodl E, Winkler A, Macheroux P (2018) Molecular mechanisms of bacterial bioluminescence. Comput Struct Biotechnol J 16:551–564

    Article  CAS  Google Scholar 

  6. Yeh HW, Ai HW (2019) Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annu Rev Anal Chem 12:129–150

    Article  CAS  Google Scholar 

  7. Fan F, Crooks C, Lamb C (2008) High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens luxCDABE. Plant J 53:393–399

    Article  CAS  Google Scholar 

  8. Xu X, Miller SA, Baysal-Gurel F, Gartemann KH, Eichenlaub R, Rajashekara G (2010) Bioluminescence imaging of Clavibacter michiganensis subsp. michiganensis infection of tomato seeds and plants. Appl Environ Microbiol 76:3978–3988

    Article  CAS  Google Scholar 

  9. Jutras PV, Soldan R, Dodds I, Schuster M, Preston GM, Van der Hoorn RAL (2021) AgroLux: bioluminescent Agrobacteria to improve molecular pharming and study plant immunity. Plant J (resubmitted)

    Google Scholar 

  10. Hwang HH, Yu M, Lai EM (2017) Agrobacterium-mediated plant transformation: biology and applications. Arab B 15:e0186

    Article  Google Scholar 

  11. Bally J, Jung H, Mortimer C, Naim F, Philips JG, Hellens R, Bombarely A, Goodin MM, Waterhouse PM (2018) The rise and rise of Nicotiana benthamiana: a plant for all reasons. Annu Rev Phytopathol 56:405–426

    Article  CAS  Google Scholar 

  12. Zhang Y, Chen M, Siemiatkowska B, Toleco MR, Jing Y, Strotmann V, Zhang J, Stahl Y, Fernie AR (2020) A highly efficient agrobacterium-mediated method for transient gene expression and functional studies in multiple plant species. Plant Commun 1:100028

    Article  Google Scholar 

  13. Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343:43–53

    CAS  PubMed  Google Scholar 

  14. Van der Hoorn RAL, Rivas S, Wulff BB, Jones JDG, Joosten MHAJ (2003) Rapid migration in gel filtration of the Cf-4 and Cf-9 resistance proteins is an intrinsic property of Cf proteins and not because of their association with high-molecular-weight proteins. Plant J 35:305–315

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by ERC project 616449 “GreenProteases” (RvdH); H2020 project 760331 “Newcotiana” (PVJ); the Quebec Government’s research funding body FRQNT (PVJ); and BBSRC iCASE (ID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renier A. L. van der Hoorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jutras, P.V., Dodds, I., van der Hoorn, R.A.L. (2022). A Bioluminescent Agrobacterium tumefaciens for Imaging Bacterial Metabolic Activity in Planta. In: Schillberg, S., Spiegel, H. (eds) Recombinant Proteins in Plants. Methods in Molecular Biology, vol 2480. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2241-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2241-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2240-7

  • Online ISBN: 978-1-0716-2241-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics