Skip to main content

Composition and Dynamics of Protein Complexes Measured by Quantitative Mass Spectrometry of Affinity-Purified Samples

  • Protocol
  • First Online:
Yeast Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2477))

  • 1279 Accesses

Abstract

Multiple protein complexes are fundamental parts of living systems. Identification of the components of these complexes and characterization of the molecular mechanisms that allow their formation, function, and regulation can be done by affinity purification of proteins and associated factors followed by mass spectrometry of peptides. Speed and specificity for the isolation of complexes from whole cell extracts improved over time, together with the reliable identification and quantification of proteins by mass spectrometry. Relative quantification of proteins in such samples can now be done to characterize even relatively nonabundant complexes. We describe here our experience with proteins fused with the Z domain, derived from staphylococcal protein A, and IgG affinity purification for the analysis of protein complexes involved in RNA metabolism in the budding yeast Saccharomyces cerevisiae. We illustrate the use of enrichment calculations for proteins in purified samples as a way to robust identification of protein partners. While the protocols presented here are specific for yeast, their principles can be applied to the study of protein complexes in any other organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rigaut G, Shevchenko A, Rutz B et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032. https://doi.org/10.1038/13732

    Article  CAS  PubMed  Google Scholar 

  2. Biedka S, Wu S, LaPeruta AJ et al (2017) Insights into remodeling events during eukaryotic large ribosomal subunit assembly provided by high resolution cryo-EM structures. RNA Biol 14:1306–1313. https://doi.org/10.1080/15476286.2017.1297914

    Article  PubMed  PubMed Central  Google Scholar 

  3. Halbeisen RE, Scherrer T, Gerber AP (2009) Affinity purification of ribosomes to access the translatome. Methods 48:306–310. https://doi.org/10.1016/j.ymeth.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  4. Oeffinger M, Wei KE, Rogers R et al (2007) Comprehensive analysis of diverse ribonucleoprotein complexes. Nat Methods 4:951–956. https://doi.org/10.1038/nmeth1101

    Article  CAS  PubMed  Google Scholar 

  5. Nilsson B, Moks T, Jansson B et al (1987) A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng 1:107–113. https://doi.org/10.1093/protein/1.2.107

    Article  CAS  PubMed  Google Scholar 

  6. Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162. https://doi.org/10.1021/ac991131p

    Article  CAS  PubMed  Google Scholar 

  7. Hebert AS, Richards AL, Bailey DJ et al (2013) The one hour yeast proteome. Mol Cell Proteomics 13:339–347. https://doi.org/10.1074/mcp.M113.034769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

  9. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  10. Gierlinski M, Gastaldello F, Cole C, Barton GJ (2018) Proteus: an R package for downstream analysis of MaxQuant output. In: bioRxiv, p 416511. https://doi.org/10.1101/416511

    Chapter  Google Scholar 

  11. Jimenez-Morales D, Rosa Campos A, Von Dollen J et al (2021) artMS: analytical R tools for mass spectrometry. R package version 1.12.0, http://artms.org.

  12. Zhang X, Smits AH, van Tilburg GB et al (2018) Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat Protoc 13:530–550. https://doi.org/10.1038/nprot.2017.147

    Article  CAS  PubMed  Google Scholar 

  13. Dehecq M, Decourty L, Namane A et al (2018) Nonsense-mediated mRNA decay involves two distinct Upf1-bound complexes. EMBO J 37:e99278. https://doi.org/10.15252/embj.201899278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arand M, Friedberg T, Oesch F (1992) Colorimetric quantitation of trace amounts of sodium lauryl sulfate in the presence of nucleic acids and proteins. Anal Biochem 207:73–75. https://doi.org/10.1016/0003-2697(92)90502-x

    Article  CAS  PubMed  Google Scholar 

  15. Choi YD, Dreyfuss G (1984) Isolation of the heterogeneous nuclear RNA-ribonucleoprotein complex (hnRNP): a unique supramolecular assembly. Proc Natl Acad Sci 81:7471–7475. https://doi.org/10.1073/pnas.81.23.7471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oberacker P, Stepper P, Bond DM et al (2019) Bio-on-magnetic-beads (BOMB): open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biol 17:e3000107. https://doi.org/10.1371/journal.pbio.3000107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rafiee M-R, Sigismondo G, Kalxdorf M et al (2020) Protease-resistant streptavidin for interaction proteomics. Mol Syst Biol 16:e9370. https://doi.org/10.15252/msb.20199370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143. https://doi.org/10.1016/0003-2697(84)90782-6

    Article  CAS  PubMed  Google Scholar 

  19. Erde J, Loo RRO, Loo JA (2014) Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments. J Proteome Res 13:1885–1895. https://doi.org/10.1021/pr4010019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahrné E, Molzahn L, Glatter T, Schmidt A (2013) Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Proteomics 13:2567–2578. https://doi.org/10.1002/pmic.201300135

    Article  CAS  PubMed  Google Scholar 

  21. Wasserstein RL, Schirm AL, Lazar NA (2019) Moving to a World Beyond “p < 0.05.”. Am Stat 73:1–19. https://doi.org/10.1080/00031305.2019.1583913

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Pasteur Institute Proteomic platform for providing access to a LC-MS/MS system. We thank Laurence Decourty and Marine Dehecq who performed the purifications for the results presented here and were involved in setting up the experimental conditions. Large-scale developments were made possible by the ANR funding of the CLEANMD and DEFineNMD grants (ANR-14-CE10-0014, ANR-18-CE11-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosmin Saveanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Namane, A., Saveanu, C. (2022). Composition and Dynamics of Protein Complexes Measured by Quantitative Mass Spectrometry of Affinity-Purified Samples. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 2477. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2257-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2257-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2256-8

  • Online ISBN: 978-1-0716-2257-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics