Skip to main content

Construction of Minicircle Suicide Genes Coding for Ribosome-Inactivating Proteins

  • Protocol
  • First Online:
Gene Therapy of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2521))

  • 1289 Accesses

Abstract

Due to the lower risks of adverse effects, nonviral gene therapy is a suitable alternative to transfect cancer cells with a suicide gene to let them kill themselves by expressing toxic ribosome-inactivating proteins. Plasmids are stable and easy-to-produce vectors, but they have some disadvantages due to the bacterial backbone. Applying the minicircle technology, this problem can be solved with manageable effort in a well-equipped laboratory. With the described methodology, minicircle-DNA can be produced at low costs. The cell killing properties are monitored following transfection using the CytoSMART® Omni system—a camera based live cell imaging device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Navarro SA, Carrillo E, Griñán-Lisón C et al (2016) Cancer suicide gene therapy: a patent review. Expert Opin Ther Pat 26(9):1095–1104. https://doi.org/10.1080/13543776.2016.1211640

    Article  CAS  PubMed  Google Scholar 

  2. Weise C, Schrot A, Wuerger LTD et al (2020) An unusual type I ribosome-inactivating protein from Agrostemma githago L. Sci Rep 10(1):15377. https://doi.org/10.1038/s41598-020-72282-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Endo Y, Mitsui K, Motizuki M et al (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28S ribosomal RNA caused by the toxins. J Biol Chem 262(12):5908–5912. https://doi.org/10.1016/S0021-9258(18)45660-8

    Article  CAS  PubMed  Google Scholar 

  4. Barbieri L, Battelli MG, Stirpe F (1993) Ribosome-inactivating proteins from plants. BBA 1154(3):237–282. https://doi.org/10.1016/0304-4157(93)90002-6

    Article  CAS  PubMed  Google Scholar 

  5. Schrot J, Weng A, Melzig MF (2015) Ribosome-inactivating and related proteins. Toxins 7(5):1556–1615. https://doi.org/10.3390/toxins7051556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sama S, Woith E, Walther W et al (2018) Targeted suicide gene transfections reveal promising results in nu/nu mice with aggressive neuroblastoma. J Control Release 275:208–216. https://doi.org/10.1016/j.jconrel.2018.02.031

    Article  CAS  PubMed  Google Scholar 

  7. Zarovni N, Vago R, Fabbrini MS (2009) Saporin suicide gene therapy. Methods Mol Biol 542:261–283. https://doi.org/10.1007/978-1-59745-561-9_14

    Article  CAS  PubMed  Google Scholar 

  8. Zarovni N, Vago R, Soldà T et al (2007) Saporin as a novel suicide gene in anticancer gene therapy. Cancer Gene Ther 14(2):165–173. https://doi.org/10.1038/sj.cgt.7700998

    Article  CAS  PubMed  Google Scholar 

  9. Baum C, Kustikova O, Modlich U et al (2006) Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 17(3):253–263. https://doi.org/10.1089/hum.2006.17.253

    Article  CAS  PubMed  Google Scholar 

  10. Jooss K, Chirmule N (2003) Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther 10(11):955–963. https://doi.org/10.1038/sj.gt.3302037

    Article  CAS  PubMed  Google Scholar 

  11. Kremer EJ (2020) Pros and cons of adenovirus-based SARS-CoV-2 vaccines. Mol Ther 28(11):2303–2304. https://doi.org/10.1016/j.ymthe.2020.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klinman DM (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4(4):249–259. https://doi.org/10.1038/nri1329

    Article  CAS  PubMed  Google Scholar 

  13. European Medicines Agency (2018) Guideline on the quality, non-clinical and clinical aspects of gene therapy medicinal products. European Medicines Agency. EMA/CAT/80183/2014

    Google Scholar 

  14. Chen ZY, He CY, Ehrhardt A et al (2003) Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8(3):495–500. https://doi.org/10.1016/s1525-0016(03)00168-0

    Article  CAS  PubMed  Google Scholar 

  15. Jia F, Wilson KD, Sun N et al (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7(3):197–199. https://doi.org/10.1038/nmeth.1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kay MA, He CY, Chen ZY (2010) A robust system for production of minicircle DNA vectors. Nat Biotechnol 28(12):1287–1289. https://doi.org/10.1038/nbt.1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weng A, Manunta MD, Thakur M et al (2015) Improved intracellular delivery of peptide- and lipid-nanoplexes by natural glycosides. J Control Release 206:75–90. https://doi.org/10.1016/j.jconrel.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  18. Clochard J, Jerz G, Schmieder P et al (2020) A new acetylated triterpene saponin from Agrostemma githago L. modulates gene delivery efficiently and shows a high cellular tolerance. Int J Pharm 589:119822. https://doi.org/10.1016/j.ijpharm.2020.119822

    Article  CAS  PubMed  Google Scholar 

  19. van Loosdregt I, Koonen-Reemst A, Maltha J (2018) Long-term, noninvasive, viability monitoring of paclitaxel treated cells (Application note. 0004)

    Google Scholar 

  20. Mitdank H, Sama S, Tröger M et al (2021) An advanced method for the small-scale production of high-quality minicircle DNA. Int J Pharm 605:120830. https://doi.org/10.1016/j.ijpharm.2021.120830

    Article  CAS  PubMed  Google Scholar 

  21. Gentechnische Methoden: Eine Sammlung von Arbeitsanleitungen für das molekularbiologische Labor. 5. Auflage edn. Spektrum Akademischer Verlag, Heidelberg. https://doi.org/10.1007/978-3-8274-2430-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Weng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sonntag, A., Mitdank, H., Weng, A. (2022). Construction of Minicircle Suicide Genes Coding for Ribosome-Inactivating Proteins. In: Walther, W. (eds) Gene Therapy of Cancer. Methods in Molecular Biology, vol 2521. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2441-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2441-8_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2440-1

  • Online ISBN: 978-1-0716-2441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics