Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2553))

Abstract

Cancer cells require higher oxygen levels and nutrition than normal cells. Cancer cells induce angiogenesis (the development of new blood vessels) from preexisting vessels. This biological process depends on the special, chemical, and physical properties of the microenvironment surrounding tumor tissues. The complexity of these properties hinders an understanding of their mechanisms. Various mathematical models have been developed to describe quantitative relationships related to angiogenesis. We developed a three-dimensional mathematical model that incorporates angiogenesis and tumor growth. We examined angiopoietin, which regulates the spouting and branching events in angiogenesis. The simulation successfully reproduced the transient decrease in new vessels during vascular network formation. This chapter describes the protocol used to perform the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11(6):393–410

    Article  CAS  Google Scholar 

  2. Shweiki D, Itin A, Soffer D et al (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359(6398):843–845

    Article  CAS  Google Scholar 

  3. Plate KH, Breier G, Weich HA et al (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359(6398):845–848

    Article  CAS  Google Scholar 

  4. Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235(4787):442–447

    Article  CAS  Google Scholar 

  5. Yadav L, Puri N, Rastogi V et al (2015) Tumour angiogenesis and angiogenic inhibitors: a review. J Clin Diagn Res 9(6):XE01

    PubMed  PubMed Central  Google Scholar 

  6. Costache M, Ioana M, Iordache S et al (2015) VEGF expression in pancreatic cancer and other malignancies: a review of the literature. Rom J Intern Med 53(3):199–208

    CAS  PubMed  Google Scholar 

  7. Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333(2):328–335

    Article  CAS  Google Scholar 

  8. Lauro S, Onesti CE, Righini R et al (2014) The use of bevacizumab in non-small cell lung cancer: an update. Anticancer Res 34(4):1537–1545

    CAS  PubMed  Google Scholar 

  9. Metzcar J, Wang Y, Heiland R et al (2019) A review of cell-based computational modeling in cancer biology. JCO Clin Cancer Inform 2:1–13

    Article  Google Scholar 

  10. Vilanova G, Colominas I, Gomez H (2017) Computational modeling of tumor-induced angiogenesis. Arch Comput Methods Eng 24(4):1071–1102

    Article  Google Scholar 

  11. Jones PF, Sleeman BD (2006) Angiogenesis—understanding the mathematical challenge. Angiogenesis 9(3):127–138

    Article  Google Scholar 

  12. Milde F, Bergdorf M, Koumoutsakos P (2008) A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J 95(7):3146–3160

    Article  CAS  Google Scholar 

  13. Perfahl H, Hughes BD, Alarcón T et al (2017) 3D hybrid modelling of vascular network formation. J Theor Biol 414:254–268

    Google Scholar 

  14. Travasso RD, Corvera Poiré E, Castro M et al (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PLoS One 6(5):e19989

    Article  CAS  Google Scholar 

  15. Zhao G, Yan W, Chen E et al (2013) Numerical simulation of the inhibitory effect of angiostatin on metastatic tumor angiogenesis and microenvironment. Bull Math Biol 75(2):274–287

    Article  Google Scholar 

  16. Anderson AR, Weaver AM, Cummings PT et al (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5):905–915

    Article  CAS  Google Scholar 

  17. Jiang Y, Pjesivac-Grbovic J, Cantrell C et al (2005) A multiscale model for avascular tumor growth. Biophys J 89(6):3884–3894

    Article  CAS  Google Scholar 

  18. Peng L, Trucu D, Lin P et al (2017) A multiscale mathematical model of tumour invasive growth. Bull Math Biol 79(3):389–429

    Article  Google Scholar 

  19. Shirinifard A, Gens JS, Zaitlen BL et al (2009) 3D multi-cell simulation of tumor growth and angiogenesis. PLoS One 4(10):e7190

    Article  Google Scholar 

  20. Lyu J, Cao J, Zhang P et al (2016) Coupled hybrid continuum-discrete model of tumor angiogenesis and growth. PLoS One 11(10):e0163173

    Article  Google Scholar 

  21. Mahlbacher G, Curtis LT, Lowengrub J et al (2018) Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment. J Immunother Cancer 6(1):1–17

    Article  Google Scholar 

  22. Salavati H, Soltani M, Amanpour S (2018) The pivotal role of angiogenesis in a multi-scale modeling of tumor growth exhibiting the avascular and vascular phases. Microvasc Res 119:105–116

    Article  CAS  Google Scholar 

  23. Stéphanou A, Lesart A-C, Deverchère J et al (2017) How tumour-induced vascular changes alter angiogenesis: insights from a computational model. J Theor Biol 419:211–226

    Article  Google Scholar 

  24. Xu J, Vilanova G, Gomez H (2016) A mathematical model coupling tumor growth and angiogenesis. PLoS One 11(2):e0149422

    Article  Google Scholar 

  25. Yonucu S, Yιlmaz D, Phipps C et al (2017) Quantifying the effects of antiangiogenic and chemotherapy drug combinations on drug delivery and treatment efficacy. PLoS Comput Biol 13(9):e1005724

    Article  Google Scholar 

  26. Liang W, Zheng Y, Zhang J et al (2019) Multiscale modeling reveals angiogenesis-induced drug resistance in brain tumors and predicts a synergistic drug combination targeting EGFR and VEGFR pathways. BMC Bioinformatics 20(7):59–71

    Google Scholar 

  27. Wijeratne PA, Vavourakis V (2019) A quantitative in silico platform for simulating cytotoxic and nanoparticle drug delivery to solid tumours. Interface Focus 9(3):20180063

    Article  Google Scholar 

  28. Xu J, Vilanova G, Gomez H (2017) Full-scale, three-dimensional simulation of early-stage tumor growth: the onset of malignancy. Comput Methods Appl Mech Eng 314:126–146

    Article  Google Scholar 

  29. Tang L, Van De Ven AL, Guo D et al (2014) Computational modeling of 3D tumor growth and angiogenesis for chemotherapy evaluation. PLoS One 9(1):e83962

    Article  Google Scholar 

  30. Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60

    Article  CAS  Google Scholar 

  31. Fagiani E, Christofori G (2013) Angiopoietins in angiogenesis. Cancer Lett 328(1):18–26

    Article  CAS  Google Scholar 

  32. Yanagisawa H, Sugimoto M, Miyashita T (2021) Mathematical simulation of tumour angiogenesis: angiopoietin balance is a key factor in vessel growth and regression. Sci Rep 11(1):1–13

    Article  Google Scholar 

  33. Holash J, Maisonpierre P, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was funded by grants from JSPS KAKENHI (grant numbers 20B205).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sugimoto, M. (2023). Computational Simulation of Tumor-Induced Angiogenesis. In: Selvarajoo, K. (eds) Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology. Methods in Molecular Biology, vol 2553. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2617-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2617-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2616-0

  • Online ISBN: 978-1-0716-2617-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics