Skip to main content

Tissue Cultivation, Preparation, and Extraction of High Molecular Weight DNA for Single-Molecule Genome Sequencing of Plant-Associated Fungi

  • Protocol
  • First Online:
Microbial Environmental Genomics (MEG)

Abstract

Extraction of high-quality, high molecular weight DNA is a critical step for sequencing an organism’s genome. For fungi, DNA extraction is often complicated by co-precipitation of secondary metabolites, the most destructive being polysaccharides, polyphenols, and melanin. Different DNA extraction protocols and clean-up methods have been developed to address challenging materials and contaminants; however, the method of fungal cultivation and tissue preparation also plays a critical role to limit the production of inhibitory compounds prior to extraction. Here, we provide protocols and guidelines for (i) fungal tissue cultivation and processing with solid media containing a cellophane overlay or in liquid media, (ii) DNA extraction with customized recommendations for taxonomically and ecologically diverse plant-associated fungi, and (iii) assessing DNA quantity and quality for downstream genome sequencing with single-molecule technology such as PacBio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Heijden MGA, Streitwolf-Engel R, Riedl R et al (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    Article  Google Scholar 

  2. Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  CAS  Google Scholar 

  3. Rodriguez RJ, White JF Jr, Arnold AE et al (2009) Fungal endophytes: diversity and functional roles: Tansley review. New Phytol 182:314–330

    Article  CAS  Google Scholar 

  4. Miyauchi S, Kiss E, Kuo A et al (2020) Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun 11:5125

    Article  CAS  Google Scholar 

  5. Dean RA, Talbot NJ, Ebbole DJ et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    Article  CAS  Google Scholar 

  6. Martin F, Aerts A, Ahrén D et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  Google Scholar 

  7. Schardl CL, Balestrini R, Florea S et al (2009) Epichloë Endophytes: clavicipitaceous Symbionts of Grasses. In: Deising HB (ed) Plant relationships. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 275–306

    Google Scholar 

  8. Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281(363):365

    Google Scholar 

  9. Rothberg JM, Hinz W, Rearick TM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352

    Article  CAS  Google Scholar 

  10. Ju J, Kim DH, Bi L et al (2006) Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc Natl Acad Sci U S A 103:19635–19640

    Article  CAS  Google Scholar 

  11. Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  Google Scholar 

  12. Jain M, Olsen HE, Paten B et al (2016) Erratum to: the Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17:256

    Article  Google Scholar 

  13. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  Google Scholar 

  14. Grigoriev IV, Nikitin R, Haridas S et al (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704

    Article  CAS  Google Scholar 

  15. Blackwell M (2011) The fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 98:426–438

    Article  Google Scholar 

  16. Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5:5–4

    Article  Google Scholar 

  17. Arnold AE, Miadlikowska J, Higgins KL et al (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297

    Article  Google Scholar 

  18. Lutzoni F, Miadlikowska J (2009) Lichens. Curr Biol 19:R502–R503

    Article  CAS  Google Scholar 

  19. Fauchery L, Uroz S, Buée M et al (2018) Purification of fungal high molecular weight genomic DNA from environmental samples. Methods Mol Biol 1775:21–35

    Article  CAS  Google Scholar 

  20. Armaleo D, Müller O, Lutzoni F et al (2019) The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics 20:605

    Article  Google Scholar 

  21. Meiser A, Otte J, Schmitt I et al (2017) Sequencing genomes from mixed DNA samples – evaluating the metagenome skimming approach in lichenized fungi. Sci Rep 7:14881

    Article  Google Scholar 

  22. Franco MEE, Wisecaver JH, Arnold AE et al (2022) Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. New Phytol 233:1317–1330

    Article  CAS  Google Scholar 

  23. Roth MG, Chilvers MI (2019) A protoplast generation and transformation method for soybean sudden death syndrome causal agents Fusarium virguliforme and F. brasiliense. Fungal Biol Biotechnol 6:7

    Article  Google Scholar 

  24. Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209. https://doi.org/10.1007/bf02670897

    Article  CAS  Google Scholar 

  25. Garber RC, Yoder OC (1983) Isolation of DNA from filamentous fungi and separation into nuclear, mitochondrial, ribosomal, and plasmid components. Anal Biochem 135:416–422

    Article  CAS  Google Scholar 

  26. Pacific Biosciences of California, Inc (2020) Technical note: preparing DNA for PacBio HiFi sequencing – extraction and quality control

    Google Scholar 

  27. Manter DK, Vivanco JM (2007) Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. J Microbiol Methods 71:7–14

    Article  CAS  Google Scholar 

  28. U’Ren JM (2016) DNA extraction from fungal mycelium using extract-n-amp. https://doi.org/10.17504/protocols.io.ga4bsgw

  29. Bi IV, Vroh Bi I, Harvengt L et al (1996) Improved RAPD amplification of recalcitrant plant DNA by the use of activated charcoal during DNA extraction. Plant Breed 115:205–206

    Article  Google Scholar 

  30. Križman M, Jakše J, Baričevič D et al (2006) Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agric Slov 87:427–433

    Google Scholar 

Download references

Acknowledgements

We would like to thank Jason Stajich, Rytas Vilgalys, David Kudrna, Marc Orbach, and Ali Mandel for the helpful discussion on fungal DNA extraction methods. The research of AK and LF was funded by the Labex ARBRE (ANR-11-LABX-0002-01). The work conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.

Author Contributions

Authors are ordered by scientific role: laboratory technicians are listed first, in alphabetical order (LF, MK, LM, and YY), followed by senior authors, in alphabetical order (KB, AK, JMU). Specific protocols were contributed by the following authors (fruiting body collection: AK and LF; cellophane overlay and liquid cultures: JMU and LPM, with input from AK and LF; DNA extraction: AK, LF, JMU, and LPM; DNA quality control: KB, YY, and MK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kerrie Barry , Annegret Kohler or Jana M. U’Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fauchery, L. et al. (2023). Tissue Cultivation, Preparation, and Extraction of High Molecular Weight DNA for Single-Molecule Genome Sequencing of Plant-Associated Fungi. In: Martin, F., Uroz, S. (eds) Microbial Environmental Genomics (MEG). Methods in Molecular Biology, vol 2605. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2871-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2871-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2870-6

  • Online ISBN: 978-1-0716-2871-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics