Skip to main content

An Improved Optical Tweezers Assay for Measuring the Force Generation of Single Kinesin Molecules

  • Protocol
  • First Online:
Mitosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1136))

Abstract

Numerous microtubule-associated molecular motors, including several kinesins and cytoplasmic dynein, produce opposing forces that regulate spindle and chromosome positioning during mitosis. The motility and force generation of these motors are therefore critical to normal cell division, and dysfunction of these processes may contribute to human disease. Optical tweezers provide a powerful method for studying the nanometer motility and piconewton force generation of single motor proteins in vitro. Using kinesin-1 as a prototype, we present a set of step-by-step, optimized protocols for expressing a kinesin construct (K560-GFP) in Escherichia coli, purifying it, and studying its force generation in an optical tweezers microscope. We also provide detailed instructions on proper alignment and calibration of an optical trapping microscope. These methods provide a foundation for a variety of similar experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10:765–777

    CAS  PubMed  Google Scholar 

  2. Vallee RB, Williams JC, Varma D et al (2004) Dynein: an ancient motor protein involved in multiple modes of transport. J Neurobiol 58:189–200

    CAS  PubMed  Google Scholar 

  3. Johansen KM, Johansen J (2007) Cell and molecular biology of the spindle matrix. Int Rev Cytol 263:155–206

    CAS  PubMed  Google Scholar 

  4. Civelekoglu-Scholey G, Scholey JM (2010) Mitotic force generators and chromosome segregation. Cell Mol Life Sci 67: 2231–2250

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Gaglio T, Saredi A, Bingham JB et al (1996) Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J Cell Biol 135:399–414

    CAS  PubMed  Google Scholar 

  6. Grill SW, Howard J, Schäffer E et al (2003) The distribution of active force generators controls mitotic spindle position. Science 301:518–521

    CAS  PubMed  Google Scholar 

  7. Hoffman DB, Pearson CG, Yen TJ et al (2001) Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Mol Biol Cell 12:1995–2009

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Winey M, Bloom K (2012) Mitotic spindle form and function. Genetics 190:1197–1224

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Kiyomitsu T, Cheeseman IM (2012) Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat Cell Biol 14:311–317

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Kapitein LC, Peterman EJG, Kwok BH et al (2005) The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435:114–118

    CAS  PubMed  Google Scholar 

  11. Ferenz NP, Paul R, Fagerstrom C et al (2009) Dynein antagonizes Eg5 by crosslinking and sliding antiparallel microtubules. Curr Biol 19:1833–1838

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Florian S, Mayer TU (2012) The functional antagonism between Eg5 and dynein in spindle bipolarization is not compatible with a simple push-pull model. Cell Rep 1:408–416

    CAS  PubMed  Google Scholar 

  13. Kapitein LC, Kwok BH, Weinger JS et al (2008) Microtubule cross-linking triggers the directional motility of kinesin-5. J Cell Biol 182:421–428

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Oladipo A, Cowan A, Rodionov V (2007) Microtubule motor Ncd induces sliding of microtubules in vivo. Mol Biol Cell 18:3601–3606

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Furuta K, Toyoshima YY (2008) Minus-end-directed motor Ncd exhibits processive movement that is enhanced by microtubule bundling in vitro. Curr Biol 18: 152–157

    CAS  PubMed  Google Scholar 

  16. Fink G, Hajdo L, Skowronek K et al (2009) The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat Cell Biol 11:717–723

    CAS  PubMed  Google Scholar 

  17. Mountain V, Simerly C, Howard L et al (1999) The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol 147:351–366

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Szczęsna E, Kasprzak AA (2012) The C-terminus of kinesin-14 Ncd is a crucial component of the force generating mechanism. FEBS Lett 586:854–858

    PubMed  Google Scholar 

  19. Wade RH, Kozielski F (2000) Structural links to kinesin directionality and movement. Nat Struct Mol Biol 7:456–460

    CAS  Google Scholar 

  20. Rogers GC, Rogers SL, Schwimmer TA et al (2004) Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427:364–370

    CAS  PubMed  Google Scholar 

  21. Mennella V, Rogers GC, Rogers SL et al (2005) Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase. Nat Cell Biol 7:235–245

    CAS  PubMed  Google Scholar 

  22. Moores CA, Milligan RA (2006) Lucky 13-microtubule depolymerisation by kinesin-13 motors. J Cell Sci 119:3905–3913

    CAS  PubMed  Google Scholar 

  23. Ross JL, Wallace K, Shuman H et al (2006) Processive bidirectional motion of dynein-dynactin complexes in vitro. Nat Cell Biol 8:562–570

    CAS  PubMed  Google Scholar 

  24. Dixit R, Ross JL, Goldman YE et al (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319: 1086–1089

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Hentrich C, Surrey T (2010) Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J Cell Biol 189:465–480

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Neuman KC, Block SM (2006) Optical trapping. Rev Sci Instrum 75:2787–2809

    Google Scholar 

  27. Verdeny I, Farré A, Mas SJ et al (2011) Optical trapping: a review of essential concepts. Opt Pur Apl 44:527–551

    Google Scholar 

  28. Svoboda K, Schmidt CF, Schnapp BJ et al (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727

    CAS  PubMed  Google Scholar 

  29. Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119

    CAS  PubMed  Google Scholar 

  30. Yin H, Wang MD, Svoboda K et al (1995) Transcription against an applied force. Science 270:1653–1657

    CAS  PubMed  Google Scholar 

  31. Gennerich A, Carter AP, Reck-Peterson SL et al (2007) Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131: 952–965

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Mallik R, Carter BC, Lex SA et al (2004) Cytoplasmic dynein functions as a gear in response to load. Nature 427:649–652

    CAS  PubMed  Google Scholar 

  33. Simmons RM, Finer JT, Chu S et al (1996) Quantitative measurements of force and displacement using an optical trap. Biophys J 70:1813–1822

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Rohrbach A (2005) Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. Phys Rev Lett 95:168102–168104

    PubMed  Google Scholar 

  35. Mahamdeh M, Pérez Campos C, Schäffer E (2011) Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers. Opt Express 19: 11759–11768

    PubMed  Google Scholar 

  36. Ashkin A, Schütze K, Dziedzic JM et al (1990) Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348:346–348

    CAS  PubMed  Google Scholar 

  37. Soppina V, Rai A, Ramaiya A et al (2009) Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc Natl Acad Sci U S A 106:19381–19386

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Gross SP (2003) Application of optical traps in vivo. Methods Enzymol 361:162–174

    CAS  PubMed  Google Scholar 

  39. Block SM, Goldstein LS, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352

    CAS  PubMed  Google Scholar 

  40. Piggee C (2009) Optical tweezers: not just for physicists anymore. Anal Chem 81:16–19

    CAS  Google Scholar 

  41. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Case RB, Pierce DW, Hom-Booher N et al (1997) The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90:959–966

    CAS  PubMed  Google Scholar 

  43. Swoboda M, Henig J, Cheng H-M et al (2012) Enzymatic oxygen scavenging for photostability without pH Drop in single-molecule experiments. ACS Nano 6:6364–6369

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Tolić-Nørrelykke IM, Berg-Sørensen K, Flyvbjerg H (2004) MatLab program for precision calibration of optical tweezers. Comput Phys Commun 159:225–240

    Google Scholar 

  45. Hansen P, Tolicnorrelykke I, Flyvbjerg H et al (2006) tweezercalib 2.0: faster version of MatLab package for precise calibration of optical tweezers. Comput Phys Commun 174:518–520

    CAS  Google Scholar 

  46. Hansen P, Tolicnorrelykke I, Flyvbjerg H et al (2006) tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers. Comput Phys Commun 175:572–573

    CAS  Google Scholar 

  47. Osterman N (2010) TweezPal – optical tweezers analysis and calibration software. Comput Phys Commun 181:1911–1916

    CAS  Google Scholar 

  48. Lee WM, Reece PJ, Marchington RF et al (2007) Construction and calibration of an optical trap on a fluorescence optical microscope. Nat Protoc 2:3226–3238

    CAS  PubMed  Google Scholar 

  49. Selvin PR, Lougheed T, Hoffman MT et al. (2007) Equipment setup for fluorescence imaging with one-nanometer accuracy (FIONA) Cold Spring Harb Protoc 2007, pdb.ip45

    Google Scholar 

  50. Van Mameren J, Wuite GJL, Heller I (2011) Introduction to optical tweezers: background, system designs, and commercial solutions. Methods Mol Biol 783:1–20

    PubMed  Google Scholar 

  51. Bornhorst JA, Falke JJ (2000) Purification of proteins using polyhistidine affinity tags. Methods Enzymol 326:245–254

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Stock MF, Hackney DD (2001) Expression of kinesin in Escherichia coli. Methods Mol Biol 164:43–48

    CAS  PubMed  Google Scholar 

  53. Gennerich A, Reck-Peterson SL (2011) Probing the force generation and stepping behavior of cytoplasmic Dynein. Methods Mol Biol 783:63–80

    CAS  PubMed  Google Scholar 

  54. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic, New York

    Google Scholar 

  55. Abramoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics International 11:36–42

    Google Scholar 

  56. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  PubMed  Google Scholar 

  57. Visscher K, Gross SP, Block SM (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J Sel Top Quantum Electron 2: 1066–1076

    CAS  Google Scholar 

  58. Allersma MW, Gittes F, deCastro MJ et al (1998) Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophys J 74:1074–1085

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Gittes F, Schmidt CF (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23:7–9

    CAS  PubMed  Google Scholar 

  60. Pralle A, Prummer M, Florin EL et al (1999) Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc Res Tech 44:378–386

    CAS  PubMed  Google Scholar 

  61. Rohrbach A, Kress H, Stelzer EHK (2003) Three-dimensional tracking of small spheres in focused laser beams: influence of the detection angular aperture. Opt Lett 28:411–413

    PubMed  Google Scholar 

  62. Neuman KC, Abbondanzieri EA, Block SM (2005) Measurement of the effective focal shift in an optical trap. Opt Lett 30:1318–1320

    PubMed Central  PubMed  Google Scholar 

  63. Schäffer E, Nørrelykke SF, Howard J (2007) Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. Langmuir 23:3654–3665

    PubMed  Google Scholar 

  64. Vermeulen KC, van Mameren J, Stienen GJ et al (2006) Calibrating bead displacements in optical tweezers using acousto-optic deflectors. Rev Sci Instrum 77:013704–013706

    Google Scholar 

  65. Florin EL, Pralle A, Stelzer EHK et al (1998) Photonic force microscope calibration by thermal noise analysis. Appl Phys A 66:75–78

    Google Scholar 

  66. Gittes F, Schmidt CF (1997) Signals and noise in micromechanical measurements. Methods Cell Biol 55:129–156

    Google Scholar 

  67. Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285

    CAS  PubMed  Google Scholar 

  68. Appleyard DC, Vandermeulen KY, Lee H et al (2007) Optical trapping for undergraduates. Am J Phys 75:5

    CAS  Google Scholar 

  69. Tolić-Nørrelykke SF, Schäffer E, Howard J et al (2006) Calibration of optical tweezers with positional detection in the back focal plane. Rev Sci Instrum 77:103101–103111

    Google Scholar 

  70. Guzmán C, Flyvbjerg H, Köszali R et al (2008) In situ viscometry by optical trapping interferometry. Appl Phys Lett 93:184102–184103

    Google Scholar 

  71. Svoboda K, Block SM (1994) Force and velocity measured for single kinesin molecules. Cell 77:773–784

    CAS  PubMed  Google Scholar 

  72. Wright WH, Sonek GJ, Berns MW (1993) Radiation trapping forces on microspheres with optical tweezers. Appl Phys Lett 63: 715–717

    CAS  Google Scholar 

  73. Nieminen TA, Knöner G, Heckenberg NR et al (2007) Physics of optical tweezers. Methods Cell Biol 82:207–236

    CAS  PubMed  Google Scholar 

  74. Roichman Y, Waldron A, Gardel E et al (2006) Optical traps with geometric aberrations. Appl Opt 45:3425–3429

    PubMed  Google Scholar 

  75. Dutra RS, Viana NB, Maia Neto PA et al (2012) Absolute calibration of optical tweezers including aberrations. Appl Phys Lett 100:131115

    Google Scholar 

  76. Viana NB, Rocha MS, Mesquita ON et al (2007) Towards absolute calibration of optical tweezers. Phys Rev E Stat Nonlin Soft Matter Phys 75:021914

    CAS  PubMed  Google Scholar 

  77. Böhm K, Steinmetzer P, Daniel A (1997) Kinesin-driven microtubule motility in the presence of alkaline–earth metal ions: indication for a calcium ion-dependent motility. Cell Motil Cytoskeleton 37:226–231

    PubMed  Google Scholar 

  78. Swan IDA (1972) The inhibition of hen egg-white lysozyme by imidazole and indole derivatives. J Mol Biol 65:59–62

    CAS  PubMed  Google Scholar 

  79. Grabski AC (2009) Advances in preparation of biological extracts for protein purification. Methods Enzymol 463:285–303

    CAS  PubMed  Google Scholar 

  80. Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103: 1685–1758

    CAS  PubMed  Google Scholar 

  81. Davies MJ (2004) Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 3:17–25

    CAS  PubMed  Google Scholar 

  82. Nilsson R, Merkel PB, Kearns DR (1972) Unambiguous evidence for the participation of singlet oxygen (1δ_) in photodynamic oxidation of amino acids. Photochem Photobiol 16:117–124

    CAS  PubMed  Google Scholar 

  83. Vigers GP, Coue M, McIntosh JR (1988) Fluorescent microtubules break up under illumination. J Cell Biol 107:1011–1024

    CAS  PubMed  Google Scholar 

  84. Guo H, Xu C, Liu C et al (2006) Mechanism and dynamics of breakage of fluorescent microtubules. Biophys J 90:2093–2098

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Redmond RW, Gamlin JN (1999) A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol 70:391–475

    CAS  PubMed  Google Scholar 

  86. Landry MP, McCall PM, Qi Z et al (2009) Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. Biophys J 97:2128–2136

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Yildiz A, Forkey JN, McKinney SA et al (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065

    CAS  PubMed  Google Scholar 

  88. Joo C, McKinney SA, Nakamura M et al (2006) Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126:515–527

    CAS  PubMed  Google Scholar 

  89. Blanchard SC, Kim HD, Gonzalez RL et al (2004) tRNA dynamics on the ribosome during translation. Proc Natl Acad Sci U S A 101:12893–12898

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Dempsey GT, Wang W, Zhuang X (2009) Fluorescence imaging at sub-diffraction-limit resolution with stochastic optical reconstruction microscopy. In: Hinterdorfer P, Oijen A (eds) Handbook of single-molecule biophysics, pp. 95–127. Springer, US

    Google Scholar 

  91. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3: 891–893

    CAS  PubMed  Google Scholar 

  92. Sambongi Y, Iko Y, Tanabe M et al (1999) Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286:1722–1724

    CAS  PubMed  Google Scholar 

  93. Adachi K, Yasuda R, Noji H et al (2000) Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc Natl Acad Sci U S A 97: 7243–7247

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Harada Y, Sakurada K, Aoki T et al (1990) Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J Mol Biol 216:49–68

    CAS  PubMed  Google Scholar 

  95. Guydosh NR, Block SM (2009) Direct observation of the binding state of the kinesin head to the microtubule. Nature 461:125–128

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Spudich JA, Rice SE, Rock RS et al (2011) The optical trapping dumbbell assay for nonprocessive motors or motors that turn around filaments. Cold Spring Harb Protoc 2011:1372–1374

    PubMed  Google Scholar 

  97. Arai Y, Yasuda R, Akashi K et al (1999) Tying a molecular knot with optical tweezers. Nature 399:446–448

    CAS  PubMed  Google Scholar 

  98. Batters C, Veigel C (2011) Using optical tweezers to study the fine details of myosin ATPase mechanochemical cycle. In: Mashanov GI, Batters C (eds) Single molecule enzymology, pp. 97–109. Humana Press, New York

    Google Scholar 

  99. Neuman KC, Chadd EH, Liou GF et al (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77:2856–2863

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Perkins TT, Li H-W, Dalal RV et al (2004) Forward and reverse motion of single RecBCD molecules on DNA. Biophys J 86: 1640–1648

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Keilin D, Hartree EF (1948) Properties of glucose oxidase (notatin). Biochem J 42: 221–229

    CAS  PubMed Central  Google Scholar 

  102. Wong CM, Wong KH, Chen XD (2008) Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol 78:927–938

    CAS  PubMed  Google Scholar 

  103. Bankar SB, Bule MV, Singhal RS et al (2009) Glucose oxidase—an overview. Biotechnol Adv 27:489–501

    CAS  PubMed  Google Scholar 

  104. Aitken C, Marshall R, Puglisi J (2007) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94:1826–1835

    PubMed  Google Scholar 

  105. Patil PV, Ballou DP (2000) The use of protocatechuate dioxygenase for maintaining anaerobic conditions in biochemical experiments. Anal Biochem 286:187–192

    CAS  PubMed  Google Scholar 

  106. Shi X, Lim J, Ha T (2010) Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe. Anal Chem 82:6132–6138

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Eigel WN, Butler JE, Ernstrom CA et al (1984) Nomenclature of proteins of cow’s milk: fifth revision. J Dairy Sci 67:1599–1631

    CAS  Google Scholar 

  108. Hofland GW, van Es M, van der Wielen LAM et al (1999) Isoelectric precipitation of casein using high-pressure CO2. Ind Eng Chem Res 38:4919–4927

    CAS  Google Scholar 

  109. Plumeré N, Henig J, Campbell WH (2012) Enzyme-catalyzed O2 removal system for electrochemical analysis under ambient air: application in an amperometric nitrate biosensor. Anal Chem 84:2141–2146

    PubMed  Google Scholar 

  110. Giffhorn F (2000) Fungal pyranose oxidases: occurrence, properties and biotechnical applications in carbohydrate chemistry. Appl Microbiol Biotechnol 54:727–740

    CAS  PubMed  Google Scholar 

  111. Pazarlioglu NK, Akkaya A, Tahsinsoy D (2009) Pyranose 2-oxidase (P2O): production from trametes versicolor in stirred tank reactor and its partial characterization. Prep Biochem Biotechnol 39:32–45

    CAS  PubMed  Google Scholar 

  112. Artolozaga MJ, Kubátová E, Volc J et al (1997) Pyranose 2-oxidase from Phanerochaete chrysosporium– further biochemical characterisation. Appl Microbiol Biotechnol 47:508–514

    CAS  PubMed  Google Scholar 

  113. Leitner C, Volc J, Haltrich D (2001) Purification and characterization of pyranose oxidase from the white rot fungus trametes multicolor. Appl Environ Microbiol 67:3636–3644

    CAS  PubMed Central  PubMed  Google Scholar 

  114. van Dijk MA, Kapitein LC, van Mameren J et al (2004) Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. J Phys Chem B 108:6479–6484

    PubMed  Google Scholar 

  115. Berg-Sørensen K, Oddershede L, Florin E-L et al (2003) Unintended filtering in a typical photodiode detection system for optical tweezers. J Appl Phys 93:3167

    Google Scholar 

  116. Peterman EJG, van Dijk MA, Kapitein LC et al (2003) Extending the bandwidth of optical-tweezers interferometry. Rev Sci Instrum 74:3246–3249

    CAS  Google Scholar 

  117. Madadi E, Samadi A, Cheraghian M et al (2012) Polarization-induced stiffness asymmetry of optical tweezers. Opt Lett 37: 3519–3521

    PubMed  Google Scholar 

  118. Dutra RS, Viana NB, Neto PAM et al (2007) Polarization effects in optical tweezers. J Opt A Pure Appl Opt 9:S221–S227

    Google Scholar 

  119. Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61:569–582

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Hecht E (2001) Optics, 4th edn. Addison-Wesley, Boston

    Google Scholar 

  121. Brasselet S, Aït-Belkacem D, Gasecka A et al (2010) Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging. Opt Express 18:14859–14870

    PubMed  Google Scholar 

  122. Schön P, Munhoz F, Gasecka A et al (2008) Polarization distortion effects in polarimetric two-photon microscopy. Opt Express 16:20891–20901

    PubMed  Google Scholar 

  123. Brideau C, Stys PK (2012) Automated control of optical polarization for nonlinear microscopy. Proc SPIE. doi:10.1117/12.908995

    Google Scholar 

  124. Axelrod D (1989) Fluorescence polarization microscopy. Methods Cell Biol 30:333–352

    CAS  PubMed  Google Scholar 

  125. Axelrod D (1979) Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J 26:557–573

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Chou CK, Chen WL, Fwu PT et al (2008) Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation. J Biomed Opt 13:014005–014005

    PubMed  Google Scholar 

  127. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW et al (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–465

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Carter AR, King GM, Ulrich TA et al (2007) Stabilization of an optical microscope to 0.1 nm in three dimensions. Appl Opt 46:421–427

    PubMed  Google Scholar 

  129. Nugent-Glandorf L, Perkins TT (2004) Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection. Opt Lett 29:2611–2613

    PubMed  Google Scholar 

  130. Mahamdeh M, Schäffer E (2009) Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution. Opt Express 17:17190–17199

    CAS  PubMed  Google Scholar 

  131. Valentine MT, Guydosh NR, Gutiérrez-Medina B et al (2008) Precision steering of an optical trap by electro-optic deflection. Opt Lett 33:599–601

    PubMed Central  PubMed  Google Scholar 

  132. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    CAS  PubMed  Google Scholar 

  133. Johnson BH, Hecht MH (1994) Recombinant proteins can be isolated from E. coli cells by repeated cycles of freezing and thawing. Biotech 12:1357–1360

    CAS  Google Scholar 

  134. James GT (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal Biochem 86:574–579

    CAS  PubMed  Google Scholar 

  135. Walker JM (ed) (1996) The protein protocols handbook. Humana Press, Totowa, NJ

    Google Scholar 

  136. Robinson J, Engelborghs Y (1982) Tubulin polymerization in dimethyl sulfoxide. J Biol Chem 257:5367–5371

    CAS  PubMed  Google Scholar 

  137. Brouhard GJ (2010) Quality control in single-molecule studies of kinesins and microtubule-associated proteins. Methods Cell Biol 97:497–506

    CAS  PubMed  Google Scholar 

  138. Novotny L, Grober RD, Karrai K (2001) Reflected image of a strongly focused spot. Opt Lett 26:789–791

    CAS  PubMed  Google Scholar 

  139. Perrone S, Volpe G, Petrov D (2008) 10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope. Rev Sci Instrum 79:106101–106101

    PubMed  Google Scholar 

  140. Martínez IA, Petrov D (2012) Back-focal-plane position detection with extended linear range for photonic force microscopy. Appl Opt 51:5973–5977

    PubMed  Google Scholar 

  141. Lang MJ, Asbury CL, Shaevitz JW et al (2002) An automated two-dimensional optical force clamp for single molecule studies. Biophys J 83:491–501

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Dreyer JK, Dreyer JK, Berg-Sorensen K, Oddershede L (2004) Improved axial position detection in optical tweezers measurements. Appl Opt 43:1991–1995

    PubMed  Google Scholar 

  143. Deufel C, Wang MD (2006) Detection of forces and displacements along the axial direction in an optical trap. Biophys J 90:657–667

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Reif F (2008) Fundamentals of statistical and thermal physics. Waveland Press Inc, Long Grove, IL

    Google Scholar 

  145. Turner LE (1976) Generalized classical equipartition theorem. Am J Phys 44:104

    Google Scholar 

  146. Richardson AC, Reihani SNS, Oddershede LB (2008) Non-harmonic potential of a single beam optical trap. Opt Express 16:15709–15717

    CAS  PubMed  Google Scholar 

  147. Jahnel M, Behrndt M, Jannasch A et al (2011) Measuring the complete force field of an optical trap. Opt Lett 36:1260–1262

    PubMed  Google Scholar 

  148. Godazgar T, Shokri R, Reihani SNS (2011) Potential mapping of optical tweezers. Opt Lett 36:3284–3286

    PubMed  Google Scholar 

  149. Martínez IA, Petrov D (2012) Force mapping of an optical trap using an acousto-optical deflector in a time-sharing regime. Appl Opt 51:5522–5526

    PubMed  Google Scholar 

  150. Farré A, Marsà F, Montes-Usategui M (2012) Optimized back-focal-plane interferometry directly measures forces of optically trapped particles. Opt Express 20:12270–12291

    PubMed  Google Scholar 

  151. Smith SB, Cui Y, Bustamante C (2003) Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol 361:134–162

    CAS  PubMed  Google Scholar 

  152. Wong WP, Halvorsen K (2006) The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur. Opt Express 14: 12517–12531

    PubMed  Google Scholar 

  153. Lukić B, Jeney S, Tischer C et al (2005) Direct observation of nondiffusive motion of a Brownian particle. Phys Rev Lett 95:160601–160604

    PubMed  Google Scholar 

  154. Pátek J, Hrubý J, Klomfar J et al (2009) Reference correlations for thermophysical properties of liquid water at 0.1 MPa. J Phys Chem Ref Data 38:21–29

    Google Scholar 

  155. Colas B, Gobin C, Lorient D (1988) Viscosity and voluminosity of caseins chemically modified by reductive alkylation with reducing sugars. J Dairy Res 55:539–546

    CAS  Google Scholar 

  156. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594

    Google Scholar 

  157. Berg-Sørensen K, Peterman EJG, Weber T et al (2006) Power spectrum analysis for optical tweezers. II: laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth. Rev Sci Instrum 77:063106

    Google Scholar 

  158. Nørrelykke SF, Flyvbjerg H (2010) Power spectrum analysis with least-squares fitting: amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers. Rev Sci Instrum 81:075103

    PubMed  Google Scholar 

  159. Mathew AE, Mejillano MR, Nath JP et al (1992) Synthesis and evaluation of some water-soluble prodrugs and derivatives of taxol with antitumor activity. J Med Chem 35:145–151

    CAS  PubMed  Google Scholar 

  160. Foss M, Wilcox BWL, Alsop GB et al (2008) Taxol crystals can masquerade as stabilized microtubules. PLoS ONE 3:e1476

    PubMed Central  PubMed  Google Scholar 

  161. Castro JS, Deymier PA, Trzaskowski B et al (2010) Heterogeneous and homogeneous nucleation of Taxol crystals in aqueous solutions and gels: effect of tubulin proteins. Colloids Surf B Biointerfaces 76:199–206

    CAS  PubMed  Google Scholar 

  162. Vershinin M, Carter BC, Razafsky DS et al (2006) Multiple-motor based transport and its regulation by Tau. Proc Natl Acad Sci U S A 104:87–92

    PubMed Central  PubMed  Google Scholar 

  163. Kerssemakers J, Howard J, Hess H et al (2006) The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy. Proc Natl Acad Sci U S A 103:15812–15817

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–28

    Google Scholar 

  165. Shaevitz JW (2004) The biophysics of molecular motors: optical trapping studies of kinesin and RNA polymerase. Stanford University, Stanford

    Google Scholar 

Download references

Acknowledgments

We thank Joshua Shaevitz, Michael Diehl, Erik Schäffer, and Kenneth Jamison for helpful discussions on optical trapping, Marko Swoboda for helpful communications regarding the use of pyranose oxidase in the oxygen scavenging system, and Laura E.K. Nicholas for assistance with photography and figure illustration. The authors are supported by the National Institutes of Health grant R01GM098469. M.P.N. received support from the NIH-funded Medical Scientist Training and Molecular Biophysics Training programs (NIH grants T32GM007288 and T32GM008572, respectively) at the Albert Einstein College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Gennerich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nicholas, M.P., Rao, L., Gennerich, A. (2014). An Improved Optical Tweezers Assay for Measuring the Force Generation of Single Kinesin Molecules. In: Sharp, D. (eds) Mitosis. Methods in Molecular Biology, vol 1136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0329-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0329-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0328-3

  • Online ISBN: 978-1-4939-0329-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics