Skip to main content

Synthesis of Aliphatic Polyester Hydrogel for Cardiac Tissue Engineering

  • Protocol
  • First Online:
Cardiac Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1181))

Abstract

Despite clinical advances, ischemic heart disease continues to be a major cause of morbidity and mortality worldwide. Prolonged cardiac ischemia and loss of cardiomyocytes frequently result in progressive pathological remodeling of the myocardium. If the heart is unable to adapt, patients may succumb to terminal heart failure. Cardiac tissue regeneration combining biodegradable biomaterials and stem cells has emerged as a new approach to restore heart function. Biomaterials, including injectable hydrogels and spongy scaffolds, can facilitate stem cell engraftment and survival and prevent adverse ventricular remodeling. Promising early results with injectable, biodegradable hydrogels for cardiac repair have provided new opportunities for designing innovative therapies to treat injured hearts.

Hydrogels can be made from natural or synthetic polymers and have a water content, flexibility, and other physiochemical characteristics similar to those of living tissue, which makes them excellent candidates for tissue repair. In addition, hydrogels can be used as a vehicle to deliver cytokines or cells to the heart and can be employed to encapsulate biological macromolecules or cells and release them into the surrounding tissues during degradation. Hydrogels undergo physicochemical modifications in response to changes in temperature or pH, depending upon their polymer composition, converting from a liquid to a gel. The gel form retains cytokine molecules, allows their prolonged, controlled release, and preserves their bioactivity for extended periods. Polyethylene glycol is a water-soluble, biocompatible polymer that has negligible immunogenicity and can produce efficient conjugation of hydrogels to growth factors. In this chapter, we provide insight into the composition, polymerization, and use of a temperature-sensitive, biodegradable, aliphatic polyester hydrogel that transforms to a gel at physiological temperatures and is a potential candidate for cardiac tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leor J, Tuvia S, Guetta V et al (2009) Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J Am Coll Cardiol 54:1014–1023

    Article  Google Scholar 

  2. Ifkovits JL, Tous E, Minakawa M et al (2010) Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci U S A 107:11507–11512

    Article  CAS  Google Scholar 

  3. Wu J, Zeng F, Huang XP et al (2011) Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials 32:579–586

    Article  CAS  Google Scholar 

  4. Singelyn JM, Sundaramurthy P, Johnson TD et al (2012) Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol 59:751–763. doi:10.1016/j.jacc.2011.10.888

    Article  CAS  Google Scholar 

  5. Sabbah HN, Wang M, Gupta RC et al (2013) Augmentation of left ventricular wall thickness with alginate hydrogel implants improves left ventricular function and prevents progressive remodeling in dogs with chronic heart failure. J Am Coll Cardiol Heart Failure 1:252–258. doi:10.1016/j.jchf.2013.02.006

    Article  Google Scholar 

  6. Balsam LB, Wagers AJ, Christensen JL et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  CAS  Google Scholar 

  7. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  Google Scholar 

  8. Tomita S, Li RK, Weisel RD et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II247–II256

    Article  CAS  Google Scholar 

  9. Assmus B, Honold J, Schachinger V et al (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355:1222–1232

    Article  CAS  Google Scholar 

  10. Schachinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221

    Article  CAS  Google Scholar 

  11. Christman KL, Lee RJ (2006) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 48:907–913

    Article  CAS  Google Scholar 

  12. Kang K, Sun L, Xiao Y et al (2012) Aged human cells rejuvenated by cytokine enhancement of biomaterials for surgical ventricular restoration. J Am Coll Cardiol 60:2237–2249. doi:10.1016/j.jacc.2012.08.985

    Article  CAS  Google Scholar 

  13. Ueno T, Pickett LC, de la Fuente SG, Lawson DC, Pappas TN (2004) Clinical application of porcine small intestinal submucosa in the management of infected or potentially contaminated abdominal defects. J Gastrointest Surg 8:109–112

    Article  Google Scholar 

  14. Zhao ZQ, Puskas JD, Xu D et al (2010) Improvement in cardiac function with small intestine extracellular matrix is associated with recruitment of C-kit cells, myofibroblasts, and macrophages after myocardial infarction. J Am Coll Cardiol 55:1250–1261

    Article  CAS  Google Scholar 

  15. Christman KL, Vardanian AJ, Fang Q et al (2004) Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 44:654–660

    Article  CAS  Google Scholar 

  16. Peppas NA, Keys KB, Torres-Lugo M, Lowman AM (1999) Poly(ethylene glycol)-containing hydrogels in drug delivery. J Control Release 62:81–87

    Article  CAS  Google Scholar 

  17. Yonet-Tanyeri N, Rich MH, Lee M et al (2013) The spatiotemporal control of erosion and molecular release from micropatterned poly(ethylene glycol)-based hydrogel. Biomaterials 34:8416–8423

    Article  CAS  Google Scholar 

  18. Torres DS, Freyman TM, Yannas IV, Spector M (2000) Tendon cell contraction of collagen-GAG matrices in vitro: effect of cross-linking. Biomaterials 21:1607–1619

    Article  CAS  Google Scholar 

  19. Brannon-Peppas L (1990) Preparation and characterization of crosslinked hydrophilic networks. In: Brannon-Peppas L, Harland RS (eds) Absorbent polymer technology. Elsevier, Amsterdam, pp 45–66

    Chapter  Google Scholar 

  20. Miyagi Y, Zeng F, Huang XP et al (2010) Surgical ventricular restoration with a cell- and cytokine-seeded biodegradable scaffold. Biomaterials 31:7684–7694

    Article  CAS  Google Scholar 

  21. Salimath AS, Phelps EA, Boopathy AV et al (2012) Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats. PLoS One 7:e50980. doi:10.1371/journal.pone.0050980

    Article  CAS  Google Scholar 

  22. Hassan W, Dong Y, Wang W (2013) Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res Ther 4:32

    Article  CAS  Google Scholar 

  23. Dhingra S, Li P, Huang XP et al (2013) Preserving PGE2 level prevents rejection of implanted allogeneic mesenchymal stem cells and restores post-infarction ventricular function. Circulation 128:S1–S10

    Article  Google Scholar 

Download references

Acknowledgement

Dr. Ren-Ke Li holds a Canada Research Chair in Cardiac Regeneration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Ke Li M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dhingra, S., Weisel, R.D., Li, RK. (2014). Synthesis of Aliphatic Polyester Hydrogel for Cardiac Tissue Engineering. In: Radisic, M., Black III, L. (eds) Cardiac Tissue Engineering. Methods in Molecular Biology, vol 1181. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1047-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1047-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1046-5

  • Online ISBN: 978-1-4939-1047-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics