Skip to main content

Patch Clamp Combined with Voltage/Concentration Clamp to Determine the Kinetics and Voltage Dependency of N-Methyl-d-aspartate (NMDA) Receptor Open Channel Blockers

  • Protocol
  • First Online:
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1183))

  • 5891 Accesses

Abstract

Electrophysiological techniques can be used to great effect to help determine the mechanism of action of a compound. However, many factors can compromise the resulting data and their analysis, such as the speed of solution exchange, expression of additional ion channel populations including other ligand-gated receptors and voltage-gated channels, compounds having multiple binding sites, and current desensitization and rundown. In this chapter, such problems and their solutions are discussed and illustrated using data from experiments involving the uncompetitive NMDA receptor antagonist memantine. Memantine differs from many other NMDA receptor channel blockers in that it is well tolerated and does not cause psychotomimetic effects at therapeutic doses. Various electrophysiological parameters of NMDA-induced current blockade by memantine have been proposed to be important in determining therapeutic tolerability; potency, onset and offset kinetics, and voltage dependency. These were all measured using whole cell patch clamp techniques using hippocampal neurons. Full results are shown here for memantine, and these are summarized and compared to those from similar experiments with other NMDA channel blockers. The interpretation of these results is discussed, as are theories concerning the tolerability of NMDA channel blockers, with the aim of illustrating how electrophysiological data can be used to form and support a physiological hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reisberg B, Doody R, Stoffler A et al (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348:1333–1341

    Article  CAS  PubMed  Google Scholar 

  2. Tariot PN, Farlow MR, Grossberg GT et al (2004) Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291:317–324

    Article  CAS  PubMed  Google Scholar 

  3. Parsons CG, Danysz W, Quack G (1999) Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist - a review of preclinical data. Neuropharmacology 38:735–767

    Article  CAS  PubMed  Google Scholar 

  4. Danysz W, Parsons CG (2003) The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease preclinical evidence. Int J Geriatr Psychiatry 18:S23–S32

    Article  PubMed  Google Scholar 

  5. Parsons CG, Gruner R, Rozental J et al (1993) Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan). Neuropharmacology 32:1337–1350

    Article  CAS  PubMed  Google Scholar 

  6. Johnson JW, Kotermanski SE (2006) Mechanism of action of memantine. Curr Opin Pharmacol 6:61–67

    Article  CAS  PubMed  Google Scholar 

  7. Rogawski MA (1993) Therapeutic potential of excitatory amino acid antagonists - channel blockers and 2,3-benzodiazepines. Trends Pharmacol Sci 14:325–331

    Article  CAS  PubMed  Google Scholar 

  8. Parsons CG, Quack G, Bresink I et al (1995) Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 34:1239–1258

    Article  CAS  PubMed  Google Scholar 

  9. Parsons CG, Panchenko VA, Pinchenko VO et al (1996) Comparative patch-clamp studies with freshly dissociated rat hippocampal and striatal neurons on the NMDA receptor antagonistic effects of amantadine and memantine. Eur J Neurosci 8:446–454

    Article  CAS  PubMed  Google Scholar 

  10. Parsons CG, Hartmann S, Spielmanns P (1998) Budipine is a low affinity, N-methyl-D-aspartate receptor antagonist: patch clamp studies in cultured striatal, hippocampal, cortical and superior colliculus neurones. Neuropharmacology 37:719–727

    Article  CAS  PubMed  Google Scholar 

  11. Bresink I, Benke TA, Collett VJ et al (1996) Effects of memantine on recombinant rat NMDA receptors expressed in HEK 293 cells. Br J Pharmacol 119:195–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Blanpied TA, Boeckman FA, Aizenman E et al (1997) Trapping channel block of NMDA-activated responses by amantadine and memantine. J Neurophysiol 77:309–323

    CAS  PubMed  Google Scholar 

  13. Chen HS, Lipton SA (1997) Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J Physiol 499:27–46

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Sobolevsky AI, Koshelev SG, Khodorov BI (1998) Interaction of memantine and amantadine with agonist-unbound NMDA-receptor channels in acutely isolated rat hippocampal neurons. J Physiol 512:47–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sobolevsky A, Koshelev S (1998) Two blocking sites of amino-adamantane derivatives in open N-methyl-D- aspartate channels. Biophys J 74:1305–1319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Grantyn R, Lux HD (1988) Similarity and mutual exclusion of NMDA- and proton-activated transient Na < + > -currents in rat tectal neurons. Neurosci Lett 89:198–203

    Article  CAS  PubMed  Google Scholar 

  17. Clark GD, Clifford DB, Zorumski CF (1990) The effect of agonist concentration, membrane voltage and calcium on N-methyl-D-aspartate receptor desensitization. Neuroscience 39:787–797

    Article  CAS  PubMed  Google Scholar 

  18. Zilberter Y, Uteshev V, Sokolova S et al (1991) Desensitization of N-methyl-D-aspartate receptors in neurons dissociated from adult rat hippocampus. Mol Pharmacol 40:337–341

    CAS  PubMed  Google Scholar 

  19. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  CAS  PubMed  Google Scholar 

  20. Parsons CG, Zong XG, Lux HD (1993) Whole cell and single channel analysis of the kinetics of glycine-sensitive N-methyl-D-aspartate receptor desensitization. Br J Pharmacol 109:213–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hashimoto A, Oka T (1997) Free D-aspartate and D-serine in the mammalian brain and periphery. Prog Neurobiol 52:325–353

    Article  CAS  PubMed  Google Scholar 

  22. Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  23. Sigworth FJ, Affolter H, Neher E (1995) Design of the EPC-9, a computer-controlled patch-clamp amplifier. 2. Software. J Neurosci Methods 56:203–215

    Article  CAS  PubMed  Google Scholar 

  24. Albuquerque EX, Pereira EFR, Castro NG et al (1995) Nicotinic receptor function in the mammalian central nervous system. Ann N Y Acad Sci 757:48–72

    Article  CAS  PubMed  Google Scholar 

  25. Rogawski MA, Yamaguchi SI, Jones SM et al (1991) Anticonvulsant Activity of the Low-Affinity Uncompetitive N-Methyl-D-Aspartate Antagonist (+/-)-5-Aminocarbonyl-10,11-dihydro-5H-dibenzo < a, d > cyclohepten-5, 10-imine (ADCI) - comparison with the Structural Analogs Dizocilpine (mK-801) and Carbamazepine. J Pharmacol Exp Ther 259:30–37

    CAS  PubMed  Google Scholar 

  26. Chen HSV, Pellegrini JW, Aggarwal SK et al (1992) Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine - therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 12:4427–4436

    CAS  PubMed  Google Scholar 

  27. Black M, Lanthorn T, Small D et al (1996) Study of potency, kinetics of block and toxicity of NMDA receptor antagonists using fura-2. Eur J Pharmacol 317:377–381

    Article  CAS  PubMed  Google Scholar 

  28. Frankiewicz T, Potier B, Bashir ZI et al (1996) Effects of memantine and MK-801 on NMDA-induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices. Br J Pharmacol 117:689–697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Clements JD, Lester RAJ, Tong G et al (1992) The time course of glutamate in the synaptic cleft. Science 258:1498–1501

    Article  CAS  PubMed  Google Scholar 

  30. Nowak L, Bregestovski P, Ascher P et al (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307:462–465

    Article  CAS  PubMed  Google Scholar 

  31. Benveniste H, Drejer J, Schusboe A et al (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    Article  CAS  PubMed  Google Scholar 

  32. Andine P, Sandberg M, Bagenholm R et al (1991) Intra- and extracellular changes of amino acids in the cerebral cortex of the neonatal rat during hypoxic-ischemia. Dev Brain Res 64:115–120

    Article  CAS  Google Scholar 

  33. Globus MYT, Busto R, Martinez E et al (1991) Comparative effect of transient global ischemia on extracellular levels of glutamate, glycine, and gamma-aminobutyric acid in vulnerable and nonvulnerable brain regions in the rat. J Neurochem 57:470–478

    Article  CAS  PubMed  Google Scholar 

  34. Globus MYT, Ginsberg MD, Busto R (1991) Excitotoxic index - a biochemical marker of selective vulnerability. Neurosci Lett 127:39–42

    Article  CAS  PubMed  Google Scholar 

  35. Buisson A, Callebert J, Mathieu E et al (1992) Striatal protection induced by lesioning the substantia-nigra of rats subjected to focal ischemia. J Neurochem 59:1153–1157

    Article  CAS  PubMed  Google Scholar 

  36. Mitani A, Andou Y, Kataoka K (1992) Selective vulnerability of hippocampal CA1 neurons cannot be explained in terms of an increase in glutamate concentration during ischemia in the gerbil: brain microdialysis study. Neuroscience 48:307–313

    Article  CAS  PubMed  Google Scholar 

  37. Davies SN, Martin D, Millar JD et al (1988) Differences in results from in vivo and in vitro studies on the use-dependency of N-methyl-aspartate antagonism by MK-801 and other phencyclidine receptor ligands. Eur J Pharmacol 145:141–152

    Article  CAS  PubMed  Google Scholar 

  38. Coan EJ, Irving AJ, Collingridge GL (1989) Low-frequency activation of the NMDA receptor system can prevent the induction of LTP. Neurosci Lett 105:205–210

    Article  CAS  PubMed  Google Scholar 

  39. Frankiewicz T, Parsons CG (1999) Memantine restores long term potentiation impaired by tonic N-methyl-D-aspartate (NMDA) receptor activation following reduction of Mg2+ in hippocampal slices. Neuropharmacology 38:1253–1259

    Article  CAS  PubMed  Google Scholar 

  40. Furukawa Y, Okada M, Akaike N et al (2000) Reduction of voltage-dependent magnesium block of N-methyl-D-aspartate receptor-mediated current by in vivo axonal injury. Neuroscience 96:385–392

    Article  CAS  PubMed  Google Scholar 

  41. Rogawski MA, Wenk GL (2003) The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Rev 9:275–308

    Article  CAS  PubMed  Google Scholar 

  42. Wang LY, Macdonald JF (1995) Modulation by magnesium of the affinity of NMDA receptors for glycine in murine hippocampal neurones. J Physiol 486:83–95

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris G. Parsons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Parsons, C.G., Gilling, K.E. (2014). Patch Clamp Combined with Voltage/Concentration Clamp to Determine the Kinetics and Voltage Dependency of N-Methyl-d-aspartate (NMDA) Receptor Open Channel Blockers. In: Martina, M., Taverna, S. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology, vol 1183. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1096-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1096-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1095-3

  • Online ISBN: 978-1-4939-1096-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics