Skip to main content

Investigating TLR Signaling Responses in Murine Dendritic Cells Upon Bacterial Infection

  • Protocol
  • First Online:
Host-Bacteria Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1197))

Abstract

Innate immune recognition of microbial components is critical for the onset of an appropriate immune response against invading pathogens, in particular by dendritic cells. Toll-like receptors (TLRs) are key in the detection of a variety of microbial stimuli.

Here we focus on the methodology used to evaluate the role of TLRs in the process of dendritic cell response to bacterial intracellular infections, using bone marrow-derived dendritic cells (BMDCs) as a model system. This protocol describes how to access the level of activation of BMDCs using standard immunology and biochemistry approaches along with examination of infected cells by immunofluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  2. Carpenter S, O’Neill LAJ (2007) How important are Toll-like receptors for antimicrobial responses? Cell Microbiol 9:1891–1901

    Article  CAS  PubMed  Google Scholar 

  3. Casanova JL, Abel L, Quintana-Murci L (2011) Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol 29:447–491

    Article  CAS  PubMed  Google Scholar 

  4. Crozat K, Guiton R, Guilliams M et al (2010) Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol Rev 234:177–198

    Article  CAS  PubMed  Google Scholar 

  5. Lutz MB, Rössner S (2007) Factors influencing the generation of murine dendritic cells from bone marrow: the special role of fetal calf serum. Immunobiology 212:855–862

    Article  CAS  PubMed  Google Scholar 

  6. Wu L, Liu Y-J (2007) Development of dendritic-cell lineages. Immunity 26:741–750

    Article  CAS  PubMed  Google Scholar 

  7. Lelouard H, Gatti E, Cappello F, Gresser O, Camosseto V, Pierre P (2002) Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature 417:177–182

    Article  CAS  PubMed  Google Scholar 

  8. Alexopoulou L, Thomas V, Schnare M et al (2002) Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med 8:878–884

    CAS  PubMed  Google Scholar 

  9. Takeuchi O, Sato S, Horiuchi T et al (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169:10–14

    Article  CAS  PubMed  Google Scholar 

  10. Takeuchi O, Hoshino K, Kawai T et al (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451

    Article  CAS  PubMed  Google Scholar 

  11. Werts C, Tapping RI, Mathison JC et al (2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2:346–352

    Article  CAS  PubMed  Google Scholar 

  12. Alexopoulou L, Holt AC, Medzhitov R et al (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  CAS  PubMed  Google Scholar 

  13. Poltorak A, He X, Smirnova I et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  CAS  PubMed  Google Scholar 

  14. Hoshino K, Takeuchi O, Kawai T et al (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752

    CAS  PubMed  Google Scholar 

  15. Feuillet V, Medjane S, Mondor I et al (2006) Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria. Proc Natl Acad Sci U S A 103:12487–12492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Uematsu S, Jang MH, Chevrier N et al (2006) Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c + lamina propria cells. Nat Immunol 7:868–874

    Article  CAS  PubMed  Google Scholar 

  17. Takeuchi O, Kawai T, Mühlradt PF et al (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13:933–940

    Article  CAS  PubMed  Google Scholar 

  18. Lund JM, Alexopoulou L, Sato A et al (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A 101:5598–5603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hemmi H, Kaisho T, Takeuchi O et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200

    Article  CAS  PubMed  Google Scholar 

  20. Demaria O, Pagni PP, Traub S et al (2010) TLR8 deficiency leads to autoimmunity in mice. J Clin Invest 120:3651–3662

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Hemmi H, Takeuchi O, Kawai T et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    Article  CAS  PubMed  Google Scholar 

  22. Tabeta K, Georgel P, Janssen E et al (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 101:3516–3521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zhang D, Zhang G, Hayden MS et al (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1526

    Article  CAS  PubMed  Google Scholar 

  24. Koblansky AA, Jankovic D, Oh H et al (2013) Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity 38:119–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Oldenburg M, Krüger A, Ferstl R et al (2012) TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337:1111–1115

    Article  CAS  PubMed  Google Scholar 

  26. Adachi O, Kawai T, Takeda K et al (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9:143–150

    Article  CAS  PubMed  Google Scholar 

  27. Hoebe K, Du X, Georgel P et al (2003) Identification of Lps2 as a key transducer of MyD88-independent TIR signaling. Nature 424:743–748

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto M, Sato S, Hemmi H et al (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640–643

    Article  CAS  PubMed  Google Scholar 

  29. Horng T, Barton GM, Flavell RA et al (2002) The adaptor molecule TIRAP provides signaling specificity for Toll-like receptors. Nature 420:329–333

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto M, Sato S, Hemmi H et al (2002) Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. Nature 420:324–329

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto M, Sato S, Hemmi H et al (2003) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4:1144–1150

    Article  CAS  PubMed  Google Scholar 

  32. Salcedo SP, Marchesini MI, Lelouard H et al (2008) Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog 4:e21

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suzana Pinto Salcedo or Lena Alexopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Salcedo, S.P., Alexopoulou, L. (2014). Investigating TLR Signaling Responses in Murine Dendritic Cells Upon Bacterial Infection. In: Vergunst, A., O'Callaghan, D. (eds) Host-Bacteria Interactions. Methods in Molecular Biology, vol 1197. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1261-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1261-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1260-5

  • Online ISBN: 978-1-4939-1261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics