Skip to main content

Small-Angle X-Ray Scattering to Obtain Models of Multivalent Lectin–Glycan Complexes

  • Protocol
  • First Online:
Lectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1200))

Abstract

Recent advances in small-angle X-ray scattering (SAXS) have led to the ability to model the glycans on glycoproteins and to obtain the low-resolution solution structures of complexes of lectins bound to multivalent glycan-presenting scaffolds. This progress in SAXS can respond to the increasing interest in the biological action of glycoproteins and lectins and in the design of multivalent glycan-based antagonists. Carbohydrates make up a significant part of the X-ray scattering content in SAXS and should be included in the model together with the protein, whose structure is most often based on a crystal structure or NMR ensemble, to give a far-improved fit with the experimental data. The modeling of the spatial positioning of glycans on proteins or in the architecture of lectin–glycan complexes delivers low-resolution structural information hitherto unmatched by any other method. SAXS data on the bacterial lectin FimH, strongly bound to heptyl α-d-mannose on a sevenfold derivatized β-cyclodextrin, permitted determination of the stoichiometry of the complex and the geometry of the lectin deposition on the multivalent β-cyclodextrin. The SAXS methods can be applied to larger complexes as the technique imposes no limit on the size of the macromolecular assembly in solution.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-1-4939-1292-6_47

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-1292-6_47

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, Dennis JW (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129:123–134

    Article  PubMed  CAS  Google Scholar 

  2. Haga Y, Ishii K, Hibino K, Sako Y, Ito Y, Taniguchi N, Suzuki T (2012) Visualizing specific protein glycoforms by transmembrane fluorescence resonance energy transfer. Nature Commun 3:907

    Article  Google Scholar 

  3. Gabius H-J, Andre S, Jimenez-Barbero J, Romero A, Solis D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313

    Article  PubMed  CAS  Google Scholar 

  4. Thumbikat P, Berry RE, Zhou G, Billips BK, Yaggie RE, Zaichuk T, Sun TT, Schaeffer AJ, Klumpp DJ (2009) Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog 5:e1000415

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bouckaert J, Berglund J, Schembri M, De Genst E, Cools L, Wuhrer M, Hung CS, Pinkner J, Slattegard R, Zavialov A, Choudhury D, Langermann S, Hultgren SJ, Wyns L, Klemm P, Oscarson S, Knight SD, De Greve H (2005) Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol Microbiol 55:441–455

    Article  PubMed  CAS  Google Scholar 

  6. Dam TK, Brewer CF (2010) Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. Glycobiology 20:270–279

    Article  PubMed  CAS  Google Scholar 

  7. Sacchettini JC, Baum LG, Brewer CF (2001) Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction Biochemistry 40:3009–3015

    CAS  Google Scholar 

  8. Turnbull WB (2011) Multivalent interactions: a hop, skip and jump. Nature Chem 3:267–268

    Article  CAS  Google Scholar 

  9. Badjic JD, Nelson A, Cantrill SJ, Turnbull WB, Stoddart JF (2005) Multivalency and cooperativity in supramolecular chemistry. Acc Chem Res 38:723–732

    Article  PubMed  CAS  Google Scholar 

  10. Bouckaert J, Li Z, Xavier C, Almant M, Caveliers V, Lahoutte T, Weeks SD, Kovensky J, Gouin SG (2013) Heptyl α-d-mannosides grafted on a β-cyclodextrin core to interfere with Escherichia coli adhesion: an in vivo multivalent effect. Chemistry 19:7847–7855

    Article  PubMed  CAS  Google Scholar 

  11. Graewert MA, Svergun DI (2013) Impact and progress in small and wide angle X-ray scattering (SAXS and WAXS). Curr Opin Struct Biol 23:1–7

    Article  Google Scholar 

  12. Fujisawa T, Kuwahara H, Hiromasa Y, Niidome T, Aoyagi H, Hatakeyama T (1997) Small-angle X-ray scattering study on CEL-III, a hemolytic lectin from Holothuroidea Cucumaria echinata, and its oligomer induced by the binding of specific carbohydrate. FEBS Lett 414:79–83

    Article  PubMed  CAS  Google Scholar 

  13. Goda S, Sadakata H, Unno H, Hatakeyama T (2013) Effects of detergents on the oligomeric structures of hemolytic lectin CEL-III as determined by small-angle X-ray scattering. Biosci Biotechnol Biochem 77:679–681

    Article  PubMed  CAS  Google Scholar 

  14. Feil SC, Lawrence S, Mulhern TD, Holien JK, Hotze EM, Farrand S, Tweten RK, Parker MW (2012) Structure of the lectin regulatory domain of the cholesterol-dependent cytolysin lectinolysin reveals the basis for its Lewis antigen specificity. Structure 20:248–258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Tabarani G, Thepaut M, Stroebel D, Ebel C, Vives C, Vachette P, Durand D, Fieschi F (2009) DC-SIGN neck domain is a pH-sensor controlling oligomerization: SAXS and hydrodynamic studies of extracellular domain. J Biol Chem 284:21229–21240

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Dong M, Xu S, Oliveira CL, Pedersen JS, Thiel S, Besenbacher F, Vorup-Jensen T (2007) Conformational changes in mannan-binding lectin bound to ligand surfaces. J Immunol 178:3016–3022

    Article  PubMed  CAS  Google Scholar 

  17. Sulak O, Cioci G, Lameignere E, Balloy V, Round A, Gutsche I, Malinovska L, Chignard M, Kosma P, Aubert DF, Marolda CL, Valvano MA, Wimmerova M, Imberty A (2011) Burkholderia cenocepacia BC2L-C is a super lectin with dual specificity and proinflammatory activity. PLoS Pathog 7:e1002238

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Petoukhov MV, Svergun DI (2005) Global rigid body modelling of macromolecular complexes against small-angle scattering data. Biophys J 89:1237–1250

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Guttman M, Weinkam P, Sali A, Lee KK (2013) All-atom ensemble modeling to analyze small-angle x-ray scattering of glycosylated proteins. Structure 21:321–331

    Article  PubMed  CAS  Google Scholar 

  21. Felix J, Elegheert J, Gutsche I, Shkumatov AV, Wen Y, Bracke N, Pannecoucke E, Vandenberghe I, Devreese B, Svergun DI, Pauwels E, Vergauwen B, Savvides SN (2013) Human IL-34 and CSF-1 establish structurally similar extracellular assemblies with their common hematopoietic receptor. Structure 21:528–539

    Article  PubMed  CAS  Google Scholar 

  22. Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Quart Rev Biophys 40:191–285

    Article  CAS  Google Scholar 

  23. Koch MHJ, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Quart Rev Biophys 34:147–227

    Article  Google Scholar 

  24. Jacques DA, Guss JM, Trewhella J (2012) Reliable structural interpretation of small-angle scattering data from bio-molecules in solution-the importance of quality control and a standard reporting framework. BMC Struct Biol 12:9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HDT, Konarev PV, Svergun DI (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 45:342–350

    Article  CAS  Google Scholar 

  26. Wellens A, Garofalo C, Nguyen H, Van Gerven N, Slattegard R, Hernalsteens JP, Wyns L, Oscarson S, De Greve H, Hultgren S, Bouckaert J (2008) Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS One 3:e2040

    Article  PubMed  PubMed Central  Google Scholar 

  27. Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS—a Windows-PC based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277–1282

    Article  CAS  Google Scholar 

  28. Franke D, Kikhney AG, Svergun DI (2012) Automated acquisition and analysis of small angle X-ray scattering data. Nucl Instrum Methods Phys Res, Sect A 689:52–59

    Article  CAS  Google Scholar 

  29. Mylonas E, Svergun DI (2007) Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering. J Appl Crystallogr 40:s245–s249

    Article  CAS  Google Scholar 

  30. Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495–503

    Article  Google Scholar 

  31. Petoukhov MV, Konarev PV, Kikhney AG, Svergun DI (2007) ATSAS 2.1—towards automated and web-supported small-angle scattering data analysis. J Appl Cryst 40:s223–s228

    Article  CAS  Google Scholar 

  32. Volkov VV, Svergun DI (2003) Uniqueness of ab-initio shape determination in small-angle scattering. J Appl Crystallogr 36:860–864

    Article  CAS  Google Scholar 

  33. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, Mccoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr, Sect D: Biol Crystallogr 66:213–221

    Article  CAS  Google Scholar 

  34. Moriarty NW, Grosse-Kunstleve RW, Adams PD (2009) Electronic ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr, Sect D: Biol Crystallogr 65:1074–1080

    Article  CAS  Google Scholar 

  35. Wellens A, Lahmann M, Touaibia M, Vaucher J, Oscarson S, Roy R, Remaut H, Bouckaert J (2012) The tyrosine gate as a potential entropic lever in the receptor-binding site of the bacterial adhesin FimH. Biochemistry 51:4790–4799

    Article  PubMed  CAS  Google Scholar 

  36. Soding J, Biegert A, Lupas AN (2013) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out with financial support to JB from the French Agence Nationale de la Recherche (ANR-12-BSV5-0016-01), the Centre National de la Recherche Scientifique, and the Minister̀e de l’Enseignement Supeŕieur et de la Recherche in France. SDW acknowledges the support of Marie-Curie Reintegration Grant. Measurements were made at beamlines X33 at the DORIS ring in Hamburg, Germany, and SWING at the French synchrotron SOLEIL, in Saint-Aubin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Bouckaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Weeks, S.D., Bouckaert, J. (2014). Small-Angle X-Ray Scattering to Obtain Models of Multivalent Lectin–Glycan Complexes. In: Hirabayashi, J. (eds) Lectins. Methods in Molecular Biology, vol 1200. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1292-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1292-6_42

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1291-9

  • Online ISBN: 978-1-4939-1292-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics