Skip to main content

Detection of Phosphatidylserine Exposure on Leukocytes Following Treatment with Human Galectins

  • Protocol
  • First Online:
Galectins

Abstract

Cellular turnover represents a fundamental aspect of immunological homeostasis. While many factors appear to regulate leukocyte removal during inflammatory resolution, recent studies suggest that members of the galectin family play a unique role in orchestrating this process. Unlike cellular removal through apoptotic cell death, several members of the galectin family induce surface expression of phosphatidylserine (PS), a phagocytic marker on cells undergoing apoptosis, in the absence of cell death. However, similar to PS on cells undergoing apoptosis, galectin-induced PS exposure sensitizes cells to phagocytic removal. As galectins appear to prepare cells for phagocytic removal without actually inducing apoptotic cell death, this process has recently been coined preaparesis. Given the unique characteristics of galectin-induced PS exposure in the context of preaparesis, we will examine important considerations when evaluating the potential impact of different galectin family members on PS exposure and cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245. doi:10.1146/annurev.biochem.69.1.217

    Article  PubMed  CAS  Google Scholar 

  2. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  PubMed  CAS  Google Scholar 

  3. Iwai K, Miyawaki T, Takizawa T, Konno A, Ohta K, Yachie A, Seki H, Taniguchi N (1994) Differential expression of bcl-2 and susceptibility to anti-Fas-mediated cell death in peripheral blood lymphocytes, monocytes, and neutrophils. Blood 84(4):1201–1208

    PubMed  CAS  Google Scholar 

  4. Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA (2011) Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 31(1):10–21. doi:10.1007/s10875-010-9494-2

    Article  PubMed  CAS  Google Scholar 

  5. Stowell SR, Karmakar S, Stowell CJ, Dias-Baruffi M, McEver RP, Cummings RD (2007) Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood 109(1):219–227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Stowell SR, Qian Y, Karmakar S, Koyama NS, Dias-Baruffi M, Leffler H, McEver RP, Cummings RD (2008) Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J Immunol 180(5):3091–3102

    Article  PubMed  CAS  Google Scholar 

  7. Stowell SR, Karmakar S, Arthur CM, Ju T, Rodrigues LC, Riul TB, Dias-Baruffi M, Miner J, McEver RP, Cummings RD (2009) Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane. Mol Biol Cell 20(5):1408–1418. doi:10.1091/mbc.E08-07-0786

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405(6782):85–90. doi:10.1038/35011084

    Article  PubMed  CAS  Google Scholar 

  9. Stowell SR, Cho M, Feasley CL, Arthur CM, Song X, Colucci JK, Karmakar S, Mehta P, Dias-Baruffi M, McEver RP, Cummings RD (2009) Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem 284(8):4989–4999

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Karmakar S, Stowell SR, Cummings RD, McEver RP (2008) Galectin-1 signaling in leukocytes requires expression of complex-type N-glycans. Glycobiology 18(10):770–778

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182. doi:10.1038/nri1785

    Article  PubMed  CAS  Google Scholar 

  12. Mayadas TN, Cullere X, Lowell CA (2013) The multifaceted functions of neutrophils. Annu Rev Pathol. doi:10.1146/annurev-pathol-020712-164023

    PubMed  Google Scholar 

  13. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2013) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. doi:10.1089/ars.2012.5149

    PubMed  Google Scholar 

  14. Lagasse E, Weissman IL (1994) bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J Exp Med 179(3):1047–1052

    Article  PubMed  CAS  Google Scholar 

  15. Shi J, Gilbert GE, Kokubo Y, Ohashi T (2001) Role of the liver in regulating numbers of circulating neutrophils. Blood 98(4):1226–1230

    Article  PubMed  CAS  Google Scholar 

  16. Perillo NL, Pace KE, Seilhamer JJ, Baum LG (1995) Apoptosis of T cells mediated by galectin-1. Nature 378(6558):736–739. doi:10.1038/378736a0

    Article  PubMed  CAS  Google Scholar 

  17. Levi G, Teichberg VI (1981) Isolation and physicochemical characterization of electrolectin, a beta-D-galactoside binding lectin from the electric organ of Electrophorus electricus. J Biol Chem 256(11):5735–5740

    PubMed  CAS  Google Scholar 

  18. Cho M, Cummings RD (1995) Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J Biol Chem 270(10):5198–5206

    Article  PubMed  CAS  Google Scholar 

  19. Cho M, Cummings RD (1995) Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. II. Localization and biosynthesis. J Biol Chem 270(10):5207–5212

    Article  PubMed  CAS  Google Scholar 

  20. Dias-Baruffi M, Stowell SR, Song SC, Arthur CM, Cho M, Rodrigues LC, Montes MA, Rossi MA, James JA, McEver RP, Cummings RD (2010) Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle. Glycobiology 20(5):507–520. doi:10.1093/glycob/cwp203

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Cerri DG, Rodrigues LC, Stowell SR, Araujo DD, Coelho MC, Oliveira SR, Bizario JC, Cummings RD, Dias-Baruffi M, Costa MC (2008) Degeneration of dystrophic or injured skeletal muscles induces high expression of Galectin-1. Glycobiology 18(11):842–850

    Article  PubMed  CAS  Google Scholar 

  22. Zinkernagel RM, Doherty PC (1974) Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248(450):701–702

    Article  PubMed  CAS  Google Scholar 

  23. Zinkernagel RM, Doherty PC (1997) The discovery of MHC restriction. Immunol Today 18(1):14–17

    Article  PubMed  CAS  Google Scholar 

  24. Stowell SR, Liepkalns JS, Hendrickson JE, Girard-Pierce KR, Smith NH, Arthur CM, Zimring JC (2013) Antigen modulation confers protection to red blood cells from antibody through fcgamma receptor ligation. J Immunol 191(10):5013–5025. doi:10.4049/jimmunol.1300885

    Article  PubMed  CAS  Google Scholar 

  25. Girard-Pierce KR, Stowell SR, Smith NH, Arthur CM, Sullivan HC, Hendrickson JE, Zimring JC (2013) A novel role for C3 in antibody-induced red blood cell clearance and antigen modulation. Blood 122(10):1793–1801. doi:10.1182/blood-2013-06-508952

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Stowell SR, Henry KL, Smith NH, Hudson KE, Halverson GR, Park JC, Bennett AM, Girard-Pierce KR, Arthur CM, Bunting ST, Zimring JC, Hendrickson JE (2013) Alloantibodies to a paternally derived RBC KEL antigen lead to hemolytic disease of the fetus/newborn in a murine model. Blood 122(8):1494–1504. doi:10.1182/blood-2013 -03-488874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Liepkalns JS, Hod EA, Stowell SR, Cadwell CM, Spitalnik SL, Zimring JC (2012) Biphasic clearance of incompatible red blood cells through a novel mechanism requiring neither complement nor Fcgamma receptors in a murine model. Transfusion 52(12):2631–2645. doi:10.1111/j.1537-2995.2012.03647.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Blood Foundation, American Society of Hematology and Hemophilia of Georgia to S.R.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean R. Stowell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Arthur, C.M., Rodrigues, L.C., Baruffi, M.D., Sullivan, H.C., Cummings, R.D., Stowell, S.R. (2015). Detection of Phosphatidylserine Exposure on Leukocytes Following Treatment with Human Galectins. In: Stowell, S., Cummings, R. (eds) Galectins. Methods in Molecular Biology, vol 1207. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1396-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1396-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1395-4

  • Online ISBN: 978-1-4939-1396-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics