Skip to main content

Use of 13C Stable Isotope Labelling for Pathway and Metabolic Flux Analysis in Leishmania Parasites

  • Protocol
  • First Online:
Parasite Genomics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1201))

Abstract

This protocol describes the combined use of metabolite profiling and stable isotope labelling to define pathways of central carbon metabolism in the protozoa parasite, Leishmania mexicana. Parasite stages are cultivated in standard or completely defined media and then rapidly transferred to chemically equivalent media containing a single 13C-labelled nutrient. The incorporation of label can be followed over time or after establishment of isotopic equilibrium by harvesting parasites with rapid metabolic quenching. 13C enrichment of multiple intracellular polar and apolar (lipidic) metabolites can be quantified using gas chromatography-mass spectrometry (GC-MS), while the uptake and secretion of 13C-labelled metabolites can be measured by 13C-NMR. Analysis of the mass isotopomer distribution of key metabolites provides information on pathway structure, while analysis of labelling kinetics can be used to infer metabolic fluxes. This protocol is exemplified using L. mexicana labelled with 13C-U-glucose. The method can be used to measure perturbations in parasite metabolism induced by drug inhibition or genetic manipulation of enzyme levels and is broadly applicable to any cultured parasite stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stuart K, Brun R, Croft S, Fairlamb A, Gürtler RE, McKerrow J, Reed S, Tarleton R (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118:1301–1310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Creek DJ, Anderson J, McConville MJ, Barrett MP (2012) Metabolomic analysis of trypanosomatid protozoa. Mol Biochem Parasitol 181:73–84

    Article  CAS  PubMed  Google Scholar 

  3. Saunders EC, DE Souza DP, Naderer T, Sernee MF, Ralton JE, Doyle MA, Macrae JI, Chambers JL, Heng J et al (2010) Central carbon metabolism of Leishmania parasites. Parasitology 137:1303–1313

    Article  PubMed  Google Scholar 

  4. T'kindt R, Scheltema RA, Jankevics A, Brunker K, Rijal S, Dujardin J-C, Breitling R, Watson DG, Coombs GH, Decuypere S (2010) Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis 4:e904

    Article  PubMed Central  PubMed  Google Scholar 

  5. Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366:1561–1577

    Article  CAS  PubMed  Google Scholar 

  6. Bern C, Maguire JH, Alvar J (2008) Complexities of assessing the disease burden attributable to leishmaniasis. PLoS Negl Trop Dis 2:e313

    Article  PubMed Central  PubMed  Google Scholar 

  7. Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    Article  PubMed Central  PubMed  Google Scholar 

  9. Doyle MA, MacRae JI, De Souza DP, Saunders EC, McConville MJ, Likić VA (2009) LeishCyc: a biochemical pathways database for Leishmania major. BMC Syst Biol 3:57

    Article  PubMed Central  PubMed  Google Scholar 

  10. Opperdoes FR, Szikora J-P (2006) In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. Mol Biochem Parasitol 147:193–206

    Article  CAS  PubMed  Google Scholar 

  11. Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA (2008) Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol 4:177

    Article  PubMed Central  PubMed  Google Scholar 

  12. Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, Harris D, Her Y, Herzyk P et al (2011) Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res 21:2129–2142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cohen-Freue G, Holzer TR, Forney JD, McMaster WR (2007) Global gene expression in Leishmania. Int J Parasitol 37:1077–1086

    Article  CAS  PubMed  Google Scholar 

  14. Kramer S (2012) Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids. Mol Biochem Parasitol 181:61–72

    Article  CAS  PubMed  Google Scholar 

  15. McConville MJ, Naderer T (2011) Metabolic pathways required for the intracellular survival of Leishmania. Annu Rev Microbiol 65:543–561

    Article  CAS  PubMed  Google Scholar 

  16. Eisenreich W, Slaghuis J, Laupitz R, Bussemer J, Stritzker J, Schwarz C, Schwarz R, Dandekar T, Goebel W, Bacher A (2006) 13C isotopologue perturbation studies of Listeria monocytogenes carbon metabolism and its modulation by the virulence regulator PrfA. Proc Natl Acad Sci U S A 103:2040–2045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Eisenreich W, Dandekar T, Heesemann J, Goebel W (2010) Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8:401–412

    Article  CAS  PubMed  Google Scholar 

  18. Eylert E, Schär J, Mertins S, Stoll R, Bacher A, Goebel W, Eisenreich W (2008) Carbon metabolism of Listeria monocytogenes growing inside macrophages. Mol Microbiol 69:1008–1017

    Article  CAS  PubMed  Google Scholar 

  19. Saunders EC, Ng WW, Chamber JM, Ng M, Naderer T, Kroemer JO, Likic VA, McConville MJ (2011) Isoptopomer profiling of Leishmania mexicana promastigotes reveals important roles for succinate fermentation and aspartate uptake in TCA cycle anaplerosis, glutamate synthesis and growth. J Biol Chem 286:27706–27717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. De Souza DP, Saunders EC, McConville MJ, Likić VA (2006) Progressive peak clustering in GC-MS metabolomic experiments applied to Leishmania parasites. Bioinformatics 22:1391–1396

    Article  PubMed  Google Scholar 

  21. Zamboni N, Fendt SM, Ruhl M, Sauer U (2009) 13C-based metabolic flux analysis. Nat Protoc 4:878–892

    Article  CAS  PubMed  Google Scholar 

  22. Bartek T, Blombach B, Lang S, Eikmanns BJ, Wiechert W, Oldiges M, Nöh K, Noack S (2011) Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum. Appl Environ Microbiol 77:6644–6652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Tang YJ, Martin HG, Myers S, Rodriguez S, Baidoo EEK, Keasling JD (2009) Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrom Rev 28:362–375

    Article  CAS  PubMed  Google Scholar 

  24. Quek L-E, Wittmann C, Nielsen LK, Krömer JO (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 8:25

    Article  PubMed Central  PubMed  Google Scholar 

  25. Rantanen A, Rousu J, Jouhten P, Zamboni N, Maaheimo H, Ukkonen E (2008) An analytic and systematic framework for estimating metabolic flux ratios from 13C tracer experiments. BMC Bioinformatics 9:266

    Article  PubMed Central  PubMed  Google Scholar 

  26. Yuan J, Bennett BD, Rabinowitz JD (2008) Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat Protoc 3:1328–1340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Clasquin MF, Melamud E, Singer A, Gooding JR, Xu X, Dong A, Cui H, Campagna SR, Savchenko A et al (2011) Riboneogenesis in yeast. Cell 145:969–980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lemons JMS, Feng X-J, Bennett BD, Legesse-Miller A, Johnson EL, Raitman I, Pollina EA, Rabitz HA, Rabinowitz JD, Coller HA (2010) Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 8:e1000514

    Article  PubMed Central  PubMed  Google Scholar 

  29. Merlen T, Sereno D, Brajon N, Rostand F, Lemesre JL (1999) Leishmania spp: completely defined medium without serum and macromolecules (CDM/LP) for the continuous in vitro cultivation of infective promastigote forms. Am J Trop Med Hyg 60:41–50

    CAS  PubMed  Google Scholar 

  30. Jennings ME, Matthews DE (2005) Determination of complex isotopomer patterns in isotopically labeled compounds by mass spectrometry. Anal Chem 77:6435–6444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. van Winden WA, Wittmann C, Heinzle E, Heijnen JJ (2002) Correcting mass isotopomer distributions for naturally occurring isotopes. Biotechnol Bioeng 80:477–479

    Article  PubMed  Google Scholar 

  32. Lee WN, Byerley LO, Bergner EA, Edmond J (1991) Mass isotopomer analysis: theoretical and practical considerations. Biol Mass Spectrom 20:451–458

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm J. McConville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Saunders, E.C., de Souza, D.P., Chambers, J.M., Ng, M., Pyke, J., McConville, M.J. (2015). Use of 13C Stable Isotope Labelling for Pathway and Metabolic Flux Analysis in Leishmania Parasites. In: Peacock, C. (eds) Parasite Genomics Protocols. Methods in Molecular Biology, vol 1201. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1438-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1438-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1437-1

  • Online ISBN: 978-1-4939-1438-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics