Skip to main content

Methods for Predicting Protein–Ligand Binding Sites

  • Protocol
  • First Online:
Molecular Modeling of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1215))

Abstract

Ligand binding is required for many proteins to function properly. A large number of bioinformatics tools have been developed to predict ligand binding sites as a first step in understanding a protein’s function or to facilitate docking computations in virtual screening based drug design. The prediction usually requires only the three-dimensional structure (experimentally determined or computationally modeled) of the target protein to be searched for ligand binding site(s), and Web servers have been built, allowing the free and simple use of prediction tools. In this chapter, we review the underlying concepts of the methods used by various tools, and discuss their different features and the related issues of ligand binding site prediction. Some cautionary notes about the use of these tools are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leis S, Schneider S, Zacharias M (2010) In silico prediction of binding sites on proteins. Curr Med Chem 17(15):1550–1562

    Article  PubMed  CAS  Google Scholar 

  2. Laurie AT, Jackson RM (2006) Methods for the prediction of protein–ligand binding sites for structure-based drug design and virtual ligand screening. Curr Protein Pept Sci 7(5):395–406

    Article  PubMed  CAS  Google Scholar 

  3. Perot S, Sperandio O, Miteva MA, Camproux AC, Villoutreix BO (2010) Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today 15(15–16):656–667

    Article  PubMed  CAS  Google Scholar 

  4. Henrich S, Salo-Ahen OM, Huang B, Rippmann FF, Cruciani G, Wade RC (2010) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit 23(2):209–219

    PubMed  CAS  Google Scholar 

  5. Lee D, Redfern O, Orengo C (2007) Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol 8(12):995–1005

    Article  PubMed  CAS  Google Scholar 

  6. Wass MN, Kelley LA, Sternberg MJ (2010) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38(Web Server issue):W469–W473

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Brylinski M, Skolnick J (2008) A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proc Natl Acad Sci U S A 105(1):129–134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Lopez G, Maietta P, Rodriguez JM, Valencia A, Tress ML (2011) Firestar – advances in the prediction of functionally important residues. Nucleic Acids Res 39(Web Server issue):W235–W241

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Oh M, Joo K, Lee J (2009) Protein-binding site prediction based on three-dimensional protein modeling. Proteins 77(Suppl 9):152–156

    Article  PubMed  CAS  Google Scholar 

  11. Roche DB, Tetchner SJ, McGuffin LJ (2011) FunFOLD: an improved automated method for the prediction of ligand binding residues using 3D models of proteins. BMC Bioinformatics 12:160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Brylinski M, Feinstein WP (2013) eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands. J Comput Aided Mol Des 27(6):551–567

    Article  PubMed  CAS  Google Scholar 

  13. Roy A, Zhang Y (2012) Recognizing protein–ligand binding sites by global structural alignment and local geometry refinement. Structure 20(6):987–997

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Lopez G, Ezkurdia I, Tress ML (2009) Assessment of ligand binding residue predictions in CASP8. Proteins 77(Suppl 9):138–146

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt T, Haas J, Gallo Cassarino T, Schwede T (2011) Assessment of ligand-binding residue predictions in CASP9. Proteins 79(Suppl 10):126–136

    Article  PubMed  CAS  Google Scholar 

  16. Wass MN, Sternberg MJ (2009) Prediction of ligand binding sites using homologous structures and conservation at CASP8. Proteins 77(Suppl 9):147–151

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Zhang Y (2008) Progress and challenges in protein structure prediction. Curr Opin Struct Biol 18(3):342–348

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Liu J, Rost B (2001) Comparing function and structure between entire proteomes. Protein Sci 10(10):1970–1979

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S et al (2013) The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res 41(Database issue):D475–D482

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Illergard K, Ardell DH, Elofsson A (2009) Structure is three to ten times more conserved than sequence – a study of structural response in protein cores. Proteins 77(3):499–508

    Article  PubMed  CAS  Google Scholar 

  21. Konc J, Janezic D (2010) ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics 26(9):1160–1168

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Keskin O, Tsai CJ, Wolfson H, Nussinov R (2004) A new, structurally nonredundant, diverse data set of protein–protein interfaces and its implications. Protein Sci 13(4):1043–1055

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Keskin O, Nussinov R (2005) Favorable scaffolds: proteins with different sequence, structure and function may associate in similar ways. Protein Eng Des Sel 18(1):11–24

    Article  PubMed  CAS  Google Scholar 

  24. Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJ (2007) Convergent evolution of enzyme active sites is not a rare phenomenon. J Mol Biol 372(3):817–845

    Article  PubMed  CAS  Google Scholar 

  25. Totrov M (2011) Ligand binding site superposition and comparison based on atomic property fields: identification of distant homologues, convergent evolution and PDB-wide clustering of binding sites. BMC Bioinformatics 12(Suppl 1):S35

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xie L, Bourne PE (2008) Detecting evolutionary relationships across existing fold space, using sequence order-independent profile-profile alignments. Proc Natl Acad Sci U S A 105(14):5441–5446

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Lee HS, Im W (2013) Ligand binding site detection by local structure alignment and its performance complementarity. J Chem Inf Model 53(9):2462–2470

    Article  PubMed  CAS  Google Scholar 

  28. Konc J, Janezic D (2010) ProBiS: a web server for detection of structurally similar protein binding sites. Nucleic Acids Res 38(Web Server issue):W436–W440

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Huang B, Schroeder M (2006) LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct Biol 6:19

    Article  PubMed  PubMed Central  Google Scholar 

  30. Weisel M, Proschak E, Schneider G (2007) PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem Cent J 1:7

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tripathi A, Kellogg GE (2010) A novel and efficient tool for locating and characterizing protein cavities and binding sites. Proteins 78(4):825–842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15(6):359–363, 389

    Article  PubMed  CAS  Google Scholar 

  33. Brady GP Jr, Stouten PF (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14(4):383–401

    Article  PubMed  CAS  Google Scholar 

  34. Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 13(5):323–330, 307–308

    Article  PubMed  CAS  Google Scholar 

  35. Nayal M, Honig B (2006) On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins 63(4):892–906

    Article  PubMed  CAS  Google Scholar 

  36. Yu J, Zhou Y, Tanaka I, Yao M (2010) Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics 26(1):46–52

    Article  PubMed  Google Scholar 

  37. Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7(9):1884–1897

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Binkowski TA, Naghibzadeh S, Liang J (2003) CASTp: computed atlas of surface topography of proteins. Nucleic Acids Res 31(13):3352–3355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34(Web Server issue):W116–W118

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Zhu H, Pisabarro MT (2011) MSPocket: an orientation-independent algorithm for the detection of ligand binding pockets. Bioinformatics 27(3):351–358

    Article  PubMed  CAS  Google Scholar 

  41. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10:168

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schmidtke P, Le Guilloux V, Maupetit J, Tuffery P (2010) fpocket: online tools for protein ensemble pocket detection and tracking. Nucleic Acids Res 38(Web Server issue):W582–W589

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Yang LW, Bahar I (2005) Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes. Structure 13(6):893–904

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shih CH, Chang CM, Lin YS, Lo WC, Hwang JK (2012) Evolutionary information hidden in a single protein structure. Proteins 80(6):1647–1657

    Article  PubMed  CAS  Google Scholar 

  45. Glaser F, Morris RJ, Najmanovich RJ, Laskowski RA, Thornton JM (2006) A method for localizing ligand binding pockets in protein structures. Proteins 62(2):479–488

    Article  PubMed  CAS  Google Scholar 

  46. Ghersi D, Sanchez R (2009) EasyMIFS and SiteHound: a toolkit for the identification of ligand-binding sites in protein structures. Bioinformatics 25(23):3185–3186

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Silberstein M, Dennis S, Brown L, Kortvelyesi T, Clodfelter K, Vajda S (2003) Identification of substrate binding sites in enzymes by computational solvent mapping. J Mol Biol 332(5):1095–1113

    Article  PubMed  CAS  Google Scholar 

  48. Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein–ligand binding sites. Bioinformatics 21(9):1908–1916

    Article  PubMed  CAS  Google Scholar 

  49. Morita M, Nakamura S, Shimizu K (2008) Highly accurate method for ligand-binding site prediction in unbound state (apo) protein structures. Proteins 73(2):468–479

    Article  PubMed  CAS  Google Scholar 

  50. Ngan CH, Hall DR, Zerbe B, Grove LE, Kozakov D, Vajda S (2012) FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics 28(2):286–287

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. An J, Totrov M, Abagyan R (2004) Comprehensive identification of “druggable” protein ligand binding sites. Genome Inform 15(2):31–41

    PubMed  CAS  Google Scholar 

  52. Cheng G, Qian B, Samudrala R, Baker D (2005) Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design. Nucleic Acids Res 33(18):5861–5867

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Hernandez M, Ghersi D, Sanchez R (2009) SITEHOUND-web: a server for ligand binding site identification in protein structures. Nucleic Acids Res 37(Web Server issue):W413–W416

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Soga S, Shirai H, Kobori M, Hirayama N (2007) Use of amino acid composition to predict ligand-binding sites. J Chem Inf Model 47(2):400–406

    Article  PubMed  CAS  Google Scholar 

  55. Edelsbrunner H, Facello M, Fu R, Liang J (1995) Measuring proteins and voids in proteins. In proceedings of the twenty-eighth Hawaii international conference on system sciences, Vol. 5: Biotechnology Computing, IEEE Computer Society Press, Los Alamitos, CA. pp 256–264

    Google Scholar 

  56. Mehio W, Kemp GJ, Taylor P, Walkinshaw MD (2010) Identification of protein binding surfaces using surface triplet propensities. Bioinformatics 26(20):2549–2555

    Article  PubMed  CAS  Google Scholar 

  57. Xie ZR, Hwang MJ (2012) Ligand-binding site prediction using ligand-interacting and binding site-enriched protein triangles. Bioinformatics 28(12):1579–1585

    Article  PubMed  CAS  Google Scholar 

  58. Xie ZR, Liu CK, Hsiao FC, Yao A, Hwang MJ (2013) LISE: a server using ligand-interacting and site-enriched protein triangles for prediction of ligand-binding sites. Nucleic Acids Res 41(Web Server issue):W292–W296

    Article  PubMed  PubMed Central  Google Scholar 

  59. Xie ZR, Hwang MJ (2010) An interaction-motif-based scoring function for protein–ligand docking. BMC Bioinformatics 11:298

    Article  PubMed  PubMed Central  Google Scholar 

  60. Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA (2009) Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol 5(12):e1000585

    Article  PubMed  PubMed Central  Google Scholar 

  61. An J, Totrov M, Abagyan R (2005) Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol Cell Proteomics 4(6):752–761

    Article  PubMed  CAS  Google Scholar 

  62. Zhang Z, Li Y, Lin B, Schroeder M, Huang B (2011) Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics 27(15):2083–2088

    Article  PubMed  CAS  Google Scholar 

  63. Huang B (2009) MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS 13(4):325–330

    Article  PubMed  CAS  Google Scholar 

  64. Kawabata T (2010) Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins 78(5):1195–1211

    Article  PubMed  CAS  Google Scholar 

  65. Chang DT, Oyang YJ, Lin JH (2005) MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic Acids Res 33(Web Server issue):W233–W238

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Fukunishi Y, Nakamura H (2011) Prediction of ligand-binding sites of proteins by molecular docking calculation for a random ligand library. Protein Sci 20(1):95–106

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Gutteridge A, Bartlett GJ, Thornton JM (2003) Using a neural network and spatial clustering to predict the location of active sites in enzymes. J Mol Biol 330(4):719–734

    Article  PubMed  CAS  Google Scholar 

  68. Laskowski RA, Luscombe NM, Swindells MB, Thornton JM (1996) Protein clefts in molecular recognition and function. Protein Sci 5(12):2438–2452

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Liang X, Zhao J, Hajivandi M, Wu R, Tao J, Amshey JW et al (2006) Quantification of membrane and membrane-bound proteins in normal and malignant breast cancer cells isolated from the same patient with primary breast carcinoma. J Proteome Res 5(10):2632–2641

    Article  PubMed  CAS  Google Scholar 

  70. Cole ST (2002) Comparative mycobacterial genomics as a tool for drug target and antigen discovery. Eur Respir J Suppl 36:78s–86s

    Article  PubMed  CAS  Google Scholar 

  71. Almen MS, Nordstrom KJ, Fredriksson R, Schioth HB (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50

    Article  PubMed  PubMed Central  Google Scholar 

  72. Laskowski RA (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29(1):221–222

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Singla N, Goldgur Y, Xu K, Paavilainen S, Nikolov DB, Himanen JP (2010) Crystal structure of the ligand-binding domain of the promiscuous EphA4 receptor reveals two distinct conformations. Biochem Biophys Res Commun 399(4):555–559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Ekins S, Kortagere S, Iyer M, Reschly EJ, Lill MA, Redinbo MR et al (2009) Challenges predicting ligand–receptor interactions of promiscuous proteins: the nuclear receptor PXR. PLoS Comput Biol 5(12):e1000594

    Article  PubMed  PubMed Central  Google Scholar 

  75. Burris TP, Montrose C, Houck KA, Osborne HE, Bocchinfuso WP, Yaden BC et al (2005) The hypolipidemic natural product guggulsterone is a promiscuous steroid receptor ligand. Mol Pharmacol 67(3):948–954

    Article  PubMed  CAS  Google Scholar 

  76. von Eichborn J, Murgueitio MS, Dunkel M, Koerner S, Bourne PE, Preissner R (2011) PROMISCUOUS: a database for network-based drug-repositioning. Nucleic Acids Res 39(Database issue):D1060–D1066

    Article  Google Scholar 

  77. Chiu YY, Lin CT, Huang JW, Hsu KC, Tseng JH, You SR et al (2013) KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms. Nucleic Acids Res 41(Database issue):D430–D440

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. van Linden OP, Kooistra AJ, Leurs R, de Esch IJ, de Graaf C (2013) KLIFS: a knowledge-based structural database to navigate kinase–ligand interaction space. J Med Chem 57(2):249–277

    Article  PubMed  Google Scholar 

  79. Skolnick J, Brylinski M (2009) FINDSITE: a combined evolution/structure-based approach to protein function prediction. Brief Bioinform 10(4):378–391

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Gandhi NS, Mancera RL (2012) Prediction of heparin binding sites in bone morphogenetic proteins (BMPs). Biochim Biophys Acta 1824(12):1374–1381

    Article  PubMed  CAS  Google Scholar 

  81. Krick R, Busse RA, Scacioc A, Stephan M, Janshoff A, Thumm M et al (2012) Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a beta-propeller protein family. Proc Natl Acad Sci U S A 109(30):E2042–E2049

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Yu DJ, Hu J, Huang Y, Shen HB, Qi Y, Tang ZM et al (2013) TargetATPsite: a template-free method for ATP-binding sites prediction with residue evolution image sparse representation and classifier ensemble. J Comput Chem 34(11):974–985

    Article  PubMed  Google Scholar 

  83. Khare H, Ratnaparkhi V, Chavan S, Jayraman V (2012) Prediction of protein-mannose binding sites using random forest. Bioinformation 8(24):1202–1205

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gandhi NS, Freeman C, Parish CR, Mancera RL (2012) Computational analyses of the catalytic and heparin-binding sites and their interactions with glycosaminoglycans in glycoside hydrolase family 79 endo-beta-d-glucuronidase (heparanase). Glycobiology 22(1):35–55

    Article  PubMed  CAS  Google Scholar 

  85. Jmol: an open-source Java viewer for chemical structure s in 3D. http://www.jmol.lorg

  86. Lopez G, Valencia A, Tress ML (2007) Firestar – prediction of functionally important residues using structural templates and alignment reliability. Nucleic Acids Res 35(Web Server issue):W573–W577

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhang Y (2009) I-TASSER: fully automated protein structure prediction in CASP8. Proteins 77(Suppl 9):100–113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Zhang Y (2007) Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 69(Suppl 8):108–117

    Article  PubMed  CAS  Google Scholar 

  89. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  PubMed  PubMed Central  Google Scholar 

  90. Roche DB, Buenavista MT, Tetchner SJ, McGuffin LJ (2011) The IntFOLD server: an integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction. Nucleic Acids Res 39(Web Server issue):W171–W176

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E et al (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31(1):365–370

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. McKusick VA (1998) On the naming of clinical disorders, with particular reference to eponyms. Medicine (Baltimore) 77(1):1–2

    Article  CAS  Google Scholar 

  93. Kalidas Y, Chandra N (2008) PocketDepth: a new depth based algorithm for identification of ligand binding sites in proteins. J Struct Biol 161(1):31–42

    Article  PubMed  CAS  Google Scholar 

  94. Tan KP, Varadarajan R, Madhusudhan MS (2011) DEPTH: a web server to compute depth and predict small-molecule binding cavities in proteins. Nucleic Acids Res 39(Web Server issue):W242–W248

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Volkamer A, Kuhn D, Rippmann F, Rarey M (2012) DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics 28(15):2074–2075

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jing Hwang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xie, ZR., Hwang, MJ. (2015). Methods for Predicting Protein–Ligand Binding Sites. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1465-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1464-7

  • Online ISBN: 978-1-4939-1465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics