Skip to main content

High-Quality Combinatorial Protein Libraries Using the Binary Patterning Approach

  • Protocol
  • First Online:
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1216))

Abstract

Protein combinatorial libraries have become a platform technology for exploring protein sequence space for novel molecules for use in research, synthetic biology, biotechnology, and medicine. To expedite the isolation of proteins with novel/desired functions using screens and selections, high-quality approaches that generate protein libraries rich in folded and soluble structures are desirable for this goal. The binary patterning approach is a protein library design method that incorporates elements of both rational design and combinatorial diversity to specify the arrangement of polar and nonpolar amino acid residues in the context of a desired, folded tertiary structure template. An overview of the considerations necessary to design and construct binary patterned libraries of de novo and natural proteins is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandecki W (1990) A method for construction of long randomized open reading frames and polypeptides. Protein Eng 3:221–226

    Article  PubMed  CAS  Google Scholar 

  2. Davidson AR, Lumb KJ, Sauer RT (1995) Cooperatively folded proteins in random sequence libraries. Nat Struct Biol 2:856–864

    Article  PubMed  CAS  Google Scholar 

  3. Prijambada ID, Yomo T, Tanaka F, Kawama T, Yamamoto K, Hasegawa A et al (1996) Solubility of artificial proteins with random sequences. FEBS Lett 382:21–25

    Article  PubMed  CAS  Google Scholar 

  4. Yamauchi A, Yomo T, Tanaka F, Prijambada ID, Ohhashi S, Yamamoto K et al (1998) Characterization of soluble artificial proteins with random sequences. FEBS Lett 421: 147–151

    Article  PubMed  CAS  Google Scholar 

  5. Keefe AD, Szostak JW (2001) Functional proteins from a random-sequence library. Nature 410:715–718

    Article  PubMed  CAS  Google Scholar 

  6. Kamtekar S, Schiffer JM, Xiong H, Babik JM, Hecht MH (1993) Protein design by binary patterning of polar and nonpolar amino acids. Science 262:1680–1685

    Article  PubMed  CAS  Google Scholar 

  7. West MW, Wang W, Patterson J, Mancias JD, Beasley JR, Hecht MH (1999) De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci U S A 96: 11211–11216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Moffet DA, Hecht MH (2001) De novo proteins from combinatorial libraries. Chem Rev 101:3191–3203

    Article  PubMed  CAS  Google Scholar 

  9. Hecht MH, Das A, Go A, Bradley LH, Wei Y (2004) De novo proteins from designed combinatorial libraries. Protein Sci 13:1711–1723

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Cherny I, Korolev M, Koehler AN, Hecht MH (2012) Proteins from an unevolved library of de novo designed sequences bind a range of small molecules. ACS Synth Biol 1:130–138

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Fisher MA, McKinley KL, Bradley LH, Viola SR, Hecht MH (2011) De novo designed proteins from a library of artificial sequences function in Escherichia coli and enable cell growth. PLoS One 6:e15364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Taylor SV, Walter KU, Kast P, Hilvert D (2001) Searching sequence space for protein catalysts. Proc Natl Acad Sci U S A 98: 10596–10601

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Bradley LH, Bricken ML, Randle C (2011) Expression, purification, and characterization of proteins from high-quality combinatorial libraries of the mammalian calmodulin central linker. Protein Expr Purif 75:186–191

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Sexton T, Hitchcook LJ, Rodgers DW, Bradley LH, Hersh LB (2012) Active site mutations change the cleavage specificity of neprilysin. PLoS One 7:10

    Article  Google Scholar 

  15. Magnani R, Chaffin B, Dick E, Bricken ML, Houtz RL, Bradley LH (2012) Utilization of a calmodulin lysine methyltransferase co-expression system for the generation of a combinatorial library of post-translationally modified proteins. Protein Expr Purif 86:83–88

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Bradley LH, Thumfort PP, Hecht MH (2006) De novo proteins from binary-patterned combinatorial libraries. In: Guerois R, López de la Paz M (eds) Protein design: methods and applications, vol 340, Methods in molecular biology. Humana Press, Totowa, NJ, pp 53–69

    Chapter  Google Scholar 

  17. Bradley LH, Wei Y, Thumfort P, Wurth C, Hecht MH (2007) Protein design by binary patterning of polar and nonpolar amino acids. In: Arndt K, Mueller KM (eds) Protein engineering protocols, vol 352, Methods in molecular biology. Humana Press, Totowa, NJ, pp 155–166

    Chapter  Google Scholar 

  18. Matsuura T, Ernst A, Pluckthun A (2002) Construction and characterization of protein libraries composed of secondary structure modules. Protein Sci 11:2631–2643

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Wei Y, Liu T, Sazinsky SL, Moffet DA, Pelczer I, Hecht MH (2003) Stably folded de novo proteins from a designed combinatorial library. Protein Sci 12:92–102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Bradley LH, Kleiner RE, Wang AF, Hecht MH, Wood DW (2005) An intein-based genetic selection allows the construction of a high-quality library of binary patterned de novo protein sequences. Protein Eng Des Sel 18:201–207

    Article  PubMed  CAS  Google Scholar 

  21. Rosenbaum DM, Roy S, Hecht MH (1999) Screening combinatorial libraries of de novo proteins by hydrogen-deuterium exchange and electrospray mass spectrometry. J Am Chem Soc 121:9509–9513

    Article  CAS  Google Scholar 

  22. Roy S, Ratnaswamy G, Boice JA, Fairman R, McLendon G, Hecht MH (1997) A protein designed by binary patterning of polar and nonpolar amino acids displays native-like properties. J Am Chem Soc 119:5302–5306

    Article  CAS  Google Scholar 

  23. Roy S, Hecht MH (2000) Cooperative thermal denaturation of proteins designed by binary patterning of polar and nonpolar amino acids. Biochemistry 39:4603–4607

    Article  PubMed  CAS  Google Scholar 

  24. Wei Y, Kim S, Fela D, Baum J, Hecht MH (2003) Solution structure of a de novo protein from a designed combinatorial library. Proc Natl Acad Sci U S A 100:13270–13273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Go A, Kim S, Baum J, Hecht MH (2008) Structure and dynamics of de novo proteins from a designed superfamily of 4-helix bundles. Protein Sci 17:821–832

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Wang W, Hecht MH (2002) Rationally designed mutations convert de novo amyloid-like fibrils into monomeric beta-sheet proteins. Proc Natl Acad Sci U S A 99:2760–2765

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Xiong HY, Buckwalter BL, Shieh HM, Hecht MH (1995) Periodicity of polar and nonpolar amino-acids is the major determinant of secondary structure in self-assembling oligomeric peptides. Proc Natl Acad Sci U S A 92:6349–6353

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Brown CL, Aksay IA, Saville DA, Hecht MH (2002) Template-directed assembly of a de novo designed protein. J Am Chem Soc 124:6846–6848

    Article  PubMed  CAS  Google Scholar 

  29. Xu G, Wang W, Groves JT, Hecht MH (2001) Self-assembled monolayers from a designed combinatorial library of de novo beta-sheet proteins. Proc Natl Acad Sci U S A 98: 3652–3657

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Hirel PH, Schmitter JM, Dessen P, Fayat G, Blanquet S (1989) Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino-acid. Proc Natl Acad Sci U S A 86:8247–8251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Dalboge H, Bayne S, Pedersen J (1990) In vivo processing of N-terminal methionine in Escherichia coli. FEBS Lett 266:1–3

    Article  PubMed  CAS  Google Scholar 

  32. Tsunasawa S, Stewart JW, Sherman F (1985) Amino-terminal processing of mutant forms of yeast Iso-1-Cytochrome-C: the specificities of methionine aminopeptidase and acetyltransferase. J Biol Chem 260:5382–5391

    PubMed  CAS  Google Scholar 

  33. Huang S, Elliott RC, Liu PS, Koduri RK, Weickmann JL, Lee JH et al (1987) Specificity of cotranslational amino-terminal processing of proteins in yeast. Biochemistry 26: 8242–8246

    Article  PubMed  CAS  Google Scholar 

  34. Bowie JU, Sauer RT (1989) Identification of C-terminal extensions that protect proteins from intracellular proteolysis. J Biol Chem 264:7596–7602

    PubMed  CAS  Google Scholar 

  35. Parsell DA, Silber KR, Sauer RT (1990) Carboxy-terminal determinants of intracellular protein-degradation. Genes Dev 4:277–286

    Article  PubMed  CAS  Google Scholar 

  36. Shoemaker KR, Kim PS, York EJ, Stewart JM, Baldwin RL (1987) Tests of the helix dipole model for stabilization of alpha-helices. Nature 326:563–567

    Article  PubMed  CAS  Google Scholar 

  37. Richardson JS, Richardson DC (1988) Amino-acid preferences for specific locations at the ends of alpha-helices. Science 240:1648–1652

    Article  PubMed  CAS  Google Scholar 

  38. Hutchinson EG, Thornton JM (1994) A revised set of potentials for beta-turn formation in proteins. Protein Sci 3:2207–2216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Arai R, Kobayashi N, Kimura A, Sato T, Matsuo K, Wang AF et al (2012) Domain-swapped dimeric structure of a stable and functional de novo four-helix bundle protein WA20. J Phys Chem B 116:6789–6797

    Article  PubMed  CAS  Google Scholar 

  40. Cornish-Bowden A (1985) Nomenclature for incompletely specified bases in nucleic-acid sequences—recommendations 1984. Nucleic Acids Res 13:3021–3030

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Chou PY, Fasman GD (1978) Empirical predictions of protein conformation. Annu Rev Biochem 47:251–276

    Article  PubMed  CAS  Google Scholar 

  42. Pace CN, Scholtz JM (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75:422–427

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Gouy M, Gautier C (1982) Codon usage in bacteria—correlation with gene expressivity. Nucleic Acids Res 10:7055–7074

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Kane JF (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6:494–500

    Article  PubMed  CAS  Google Scholar 

  45. Virnekas B, Ge L, Pluckthun A, Schneider KC, Wellnhofer G, Moroney SE (1994) Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res 22: 5600–5607

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Babu YS, Sack JS, Greenhough TJ, Bugg CE, Means AR, Cook WJ (1985) Three-dimensional structure of calmodulin. Nature 315:37–40

    Article  PubMed  CAS  Google Scholar 

  47. Babu YS, Bugg CE, Cook WJ (1988) Structure of calmodulin refined at 2.2 A resolution. J Mol Biol 204:191–204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support was obtained from the following sources: a pilot project grant from the NIH National Center for Research Resources (NCRR) Grant P20 RR020171, the Kentucky Science and Engineering Foundation (Grant Agreement # KSEF-148-502-207-201 with the Kentucky Science and Technology Corporation), the University of Kentucky Office of the Vice President of Research, and the University of Kentucky College of Medicine Startup funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke H. Bradley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bradley, L.H. (2014). High-Quality Combinatorial Protein Libraries Using the Binary Patterning Approach. In: Köhler, V. (eds) Protein Design. Methods in Molecular Biology, vol 1216. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1486-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1486-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1485-2

  • Online ISBN: 978-1-4939-1486-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics