Skip to main content

Retrograde Tract-Tracing “Plus”: Adding Extra Value to Retrogradely Traced Neurons

  • Protocol
  • First Online:
Neural Tracing Methods

Part of the book series: Neuromethods ((NM,volume 92))

Abstract

Classical neuroanatomical tract-tracing methods have formed the basis for most of our current understanding of brain circuits. However, to obtain a deeper knowledge of the main operational principles of the brain, the simple delineation of brain connectivity is not sufficient. This particularly holds true in regard to the analysis of connections within the diseased brain, for instance, the study of a number of major neurological disorders through the use of animal models. In other words, the information gathered from tract-tracing techniques is often too static, and recent findings in the fields of neurophysiology, receptor mapping, and neuroimaging (among others) need to be integrated within the context of structural data of brain connectivity as seen with neuroanatomical tracing techniques. During the past few years, our laboratory has pioneered a number of combinations of retrograde tracers with in situ hybridization, analyzing the changes in mRNA expression levels within brain circuits of interest. More recently, we have succeeded in combining a number of tract-tracing methods with a newly introduced technique known as in situ proximity ligation assay (PLA). The PLA technique is particularly well suited for the analysis of protein-protein interactions. This combination of methods enabled us to elucidate unequivocally the presence of GPCR heteromers within identified brain circuits and we strongly believe that this will soon become a popular approach in the field. Here we provide readers with a landscape view of these approaches, together with step-by-step protocols so that these methods may be easily reproduced even by inexperienced users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aston-Jones G, Card JP (2000) Use of pseudorabies virus to delineate multi-synaptic circuits in brain: opportunities and limitations. J Neurosci Meth 103:51–61

    Article  CAS  Google Scholar 

  2. Aymerich MS, Barroso-Chinea P, Pérez-Manso M, Muñoz-Patiño AM, Moreno-Igoa M, González-Hernández T, Lanciego JL (2006) Consequences of unilateral nigrostriatal denervation on the thalamostriatal pathway in rats. Eur J Neurosci 23:2099–2108

    Article  CAS  PubMed  Google Scholar 

  3. Barroso-Chinea P, Castle M, Aymerich MS, Pérez-Manso M, Erro E, Tuñón T, Lanciego JL (2007) Expression of the mRNAs encoding for the vesicular glutamate transporters 1 and 2 in the rat thalamus. J Comp Neurol 501:703–715

    Article  CAS  PubMed  Google Scholar 

  4. Barroso-Chinea P, Rico AJ, Pérez-Manso M, Roda E, López IE, Luis-Ravelo D, Lanciego JL (2008) Glutamatergic pallidothalamic projections and their implications in the pathophysiology of Parkinson’s disease. Neurobiol Dis 31:422–432

    Article  CAS  PubMed  Google Scholar 

  5. Barroso-Chinea P, Castle M, Aymerich MS, Lanciego JL (2008) Expression of vesicular glutamate transporters 1 and 2 in the cells of origin of the rat thalamostriatal pathway. J Chem Neuroanat 35:101–107

    Article  CAS  PubMed  Google Scholar 

  6. Bolam JP (1992) Experimental neuroanatomy. Oxford University Press, Oxford, UK

    Google Scholar 

  7. Callén L, Moreno E, Barroso-Chinea P, Moreno-Delgado D, Cortés A, Mallol J, Casadó V, Lanciego JL, Franco R, Lluis C, Canela EI, McCormick PJ (2012) Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. J Biol Chem 287:20851–20865

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chang HT, Kuo H, Whittaker JA, Cooper NGF (1990) Light and electron microscopic analysis of projection neurons retrogradely labelled with Fluoro-Gold: notes on the application of antibodies to Fluoro-Gold. J Neurosci Meth 35:31–37

    Article  CAS  Google Scholar 

  9. Conte-Perales L, Barroso-Chinea P, Rico AJ, Gómez-Bautista V, López IP, Roda E, Wouterlood FG, Lanciego JL (2010) Neuroanatomical tracing combined with in situ hybridization: analysis of gene expression patterns within brain circuits of interest. J Neurosci Meth 194:28–33

    Article  CAS  Google Scholar 

  10. Conte-Perales L, Rico AJ, Barroso-Chinea P, Gómez-Bautista V, Roda E, Luquin N, Sierra S, Lanciego JL (2011) Pallidothalamic-projecting neurons in Macaca fascicularis co-express GABAergic and glutamatergic markers as seen in control, MPTP-treated and dyskinetic monkeys. Brain Struct Funct 216:371–386

    Article  CAS  PubMed  Google Scholar 

  11. Coolen LM, Jansen HT, Goodman RL, Wood RI, Lehman MN (1999) A new method for simultaneous demonstration of anterograde and retrograde connections in the brain: co-injections of biotinylated dextran amine and the beta subunit of cholera toxin. J Neurosci Meth 91:1–8

    Article  CAS  Google Scholar 

  12. Cowan WM, Cuénod M (1975) The use of axonal transport for studies of neuronal connectivity. Elsevier, Amsterdam

    Google Scholar 

  13. Egertova M, Elphick MR (2000) Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J Comp Neurol 422:159–171

    Article  CAS  PubMed  Google Scholar 

  14. Erro E, Lanciego JL, Giménez-Amaya JM (2002) Re-examination of the thalamostriatal projections in the rat with retrograde tracers. Neurosci Res 42:45–55

    Article  Google Scholar 

  15. Ferré S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, Fuxe K, George SR, Javitch JA, Lohse MJ, Mackie K, Milligan G, Pfleger KD, Volkow ND, Waldoher M, Wood AS, Franco R (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5:131–134

    Article  PubMed Central  PubMed  Google Scholar 

  16. Geerling JC, Mettenleiter TC, Loewy AD (2006) Viral tracers for the analysis of neural circuits. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract-tracing 3: molecules, neurons, and systems. Springer, New York, NY, pp 262–303

    Google Scholar 

  17. Gerfen CR, Sawchenko PE (1984) A method for anterograde axonal tracing of chemically specified circuits in the central nervous system: combined Phaseolus vulgaris-leucoagglutinin (PHA-L) tract tracing and immunohistochemistry. Brain Res 343:144–150

    Article  Google Scholar 

  18. Heimer L, Robards M (1981) Neuroanatomical tract-tracing methods. Plenum, New York, NY

    Book  Google Scholar 

  19. Heimer L, Zaborszky L (1991) Neuroanatomical tract-tracing methods 2. Recent progress. Plenum, New York, NY

    Google Scholar 

  20. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res 547:267–274

    Article  CAS  PubMed  Google Scholar 

  21. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    CAS  PubMed  Google Scholar 

  22. Julian MD, Martin AB, Cuellar B, Rodriguez De Fonzeca F, Navarro M, Moratalla R, Garcia-Segura LM (2003) Neuroanatomical relationship between type 1 of cannabinoid receptors and dopaminergic systems in the rat basal ganglia. Neuroscience 119:309–318

    Article  CAS  PubMed  Google Scholar 

  23. Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Meth 103:63–72

    Article  CAS  Google Scholar 

  24. Köbbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S (2000) Current concepts in neuroanatomical tracing. Prog Neurobiol 62:327–351

    Article  PubMed  Google Scholar 

  25. Kristensson K, Olsson Y, Sjöstrand J (1971) Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve. Brain Res 32:399–406

    Article  CAS  PubMed  Google Scholar 

  26. Kristensson K, Ghetti B, Wisniewski HM (1974) Study on the propagation of herpes simplex virus (type 2) into the brain after intraocular injection. Brain Res 69:189–201

    Article  CAS  PubMed  Google Scholar 

  27. Kuypers HG, Bentivoglio M, van der Kooy D, Catsman-Berrevoets CE (1980) Double retrograde neuronal labeling through divergent axon collaterals, using two fluorescent tracers with the same excitation wavelength which label different features of the cell. Exp Brain Res 40:383–392

    Article  CAS  PubMed  Google Scholar 

  28. Lanciego JL, Wouterlood FG (1994) Dual anterograde axonal tracing with Phaseolus vulgaris leucoagglutinin (PHA-L) and biotinylated dextran amine (BDA). Neurosci Protoc 94-050-06-01-13

    Google Scholar 

  29. Lanciego JL, Wouterlood FG (2000) Neuroanatomical tract-tracing methods beyond 2000: what’s now and next. J Neurosci Meth 130:1–2

    Article  Google Scholar 

  30. Lanciego JL, Wouterlood FG (2006) Multiple neuroanatomical tract-tracing: approaches for multiple tract-tracing. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract-tracing 3: molecules, neurons, and systems. Springer, New York, NY, pp 336–365

    Chapter  Google Scholar 

  31. Lanciego JL, Wouterlood FG (2010) Proceedings of the workshop “neuroanatomical tracing and systems neuroscience: the state of the art”, 7th FENS meeting, Amsterdam, The Netherlands, 3 Jul 2010. J Neurosci Meth 194:1

    Article  Google Scholar 

  32. Lanciego JL, Wouterlood FG (2011) A half century of experimental neuroanatomical tracing. J Chem Neuroanat 42:157–183

    Article  PubMed  Google Scholar 

  33. Lanciego JL, Wouterlood FG, Erro E, Arribas J, Gonzalo N, Urra X, Cervantes S, Giménez-Amaya JM (2000) Complex brain circuits studied via simultaneous and permanent detection of three transported neuroanatomical tracers in the same histological section. J Neurosci Meth 103:127–135

    Article  CAS  Google Scholar 

  34. Lanciego JL, Barroso-Chinea P, Rico AJ, Conte-Perales L, Callen L, Roda E, Gómez-Bautista V, Lopez IP, Lluis C, Labandeira-Garcia JL, Franco R (2011) Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of Macaca fascicularis. J Psychopharmacol 25:97–104

    Article  CAS  PubMed  Google Scholar 

  35. LaVail JH, LaVail MM (1972) Retrograde axonal transport in the central nervous system. Science 176:1416–1417

    Article  CAS  PubMed  Google Scholar 

  36. Lei W, Jiao Y, Del Mar N, Reiner A (2004) Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 24:8289–8299

    Article  CAS  PubMed  Google Scholar 

  37. López IP, Salin P, Kachidian P, Barroso-Chinea P, Rico AJ, Gómez-Bautista V, Conte-Perales L, Coulon P, Kerkerian-Le Goff L, Lanciego JL (2010) The added value of rabies virus as a retrograde tracer when combined with dual anterograde tract-tracing. J Neurosci Meth 194:21–27

    Article  Google Scholar 

  38. Mailleux P, Vanderhaeghen JJ (1992) Distribution of neuronal cannabinoid receptor in the adult brain: a comparative receptor binding autoradiography and in situ hybridization histochemistry. Neuroscience 48:655–668

    Article  CAS  PubMed  Google Scholar 

  39. Mesulam MM (1976) The blue reaction product in horseradish peroxidase neurohistochemistry. J Histochem Cytochem 24:1273–1280

    Article  CAS  PubMed  Google Scholar 

  40. Mesulam MM (1978) Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    Article  CAS  PubMed  Google Scholar 

  41. Morecraft RJ, Ugolini G, Lanciego JL, Wouterlood FG, Pandya DN (2009) Classic and contemporary neural tract tracing techniques. In: Johansen-Berg H, Behrens T (eds) Diffusion MRI: from quantitative measurement to in-vivo neuroanatomy. Oxford University Press, Oxford, pp 273–308

    Google Scholar 

  42. Pérez-Manso M, Barroso-Chinea P, Aymerich MS, Lanciego JL (2006) ‘Functional’ neuroanatomical tract-tracing: analysis of changes in gene expression of brain circuits of interest. Brain Res 1072:91–98

    Article  PubMed  Google Scholar 

  43. Trojanowski JQ, Gonatas JO, Gonatas NK (1981) Conjugates of horseradish peroxidase (HRP) with cholera toxin and wheat germ agglutinin are superior to free HRP as orthogradely transported markers. Brain Res 223:381–385

    Article  CAS  PubMed  Google Scholar 

  44. Trojanowski JQ, Gonatas JO, Steiber A, Gonatas NK (1982) Horseradish peroxidase (HRP) conjugates of cholera toxin and lectins are more sensitive retrograde transported markers than free HRP. Brain Res 231:33–50

    Article  CAS  PubMed  Google Scholar 

  45. Reiner A, Honig MG (2006) Dextran amines: versatile tools for anterograde and retrograde studies of nervous system connectivity. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract-tracing 3: molecules, neurons, and systems. Springer, New York, NY, pp 304–335

    Chapter  Google Scholar 

  46. Reiner A, Veenman CL, Honig MG (1993) Anterograde tracing using biotinylated dextran amine. Neurosci Protoc 93-050-14

    Google Scholar 

  47. Reiner A, Veenman CL, Medina Y, Jiao N, Del Mar N, Honig MG (2000) Pathway tracing using biotinylated dextran amines. J Neurosci Meth 103:11–22

    Article  Google Scholar 

  48. Rico AJ, Barroso-Chinea P, Conte-Perales L, Roda E, Gómez-Bautista V, Gendive M, Obeso JA, Lanciego JL (2010) A direct projection from the subthalamic nucleus to the ventral thalamus in monkeys. Neurobiol Dis 39:381–392

    Article  PubMed  Google Scholar 

  49. Salin P, Castle M, Kachidian P, Barroso-Chinea P, López IP, Rico AJ, Kerkerian-Le Goff L, Coulon P, Lanciego JL (2008) High-resolution neuroanatomical tract-tracing for the analysis of striatal microcircuits. Brain Res 1221:49–58

    Article  CAS  PubMed  Google Scholar 

  50. Schmued LC, Fallon JH (1986) Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res 377:147–154

    Article  CAS  PubMed  Google Scholar 

  51. Sierra S, Luquin N, Rico AJ, Gómez-Bautista V, Roda E, Dopeso-Reyes IG, Vásquez A, Martínez-Pinilla E, Labandeira-García JL, Franco R, Lanciego JL (2014) Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Struct Funct (in press, DOI: 10.1007/s00429-014-0823-8)

    Google Scholar 

  52. Söderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG, Landegren U (2008) Characterizing proteins and their interaction in cells and tissues using the in situ proximity ligation assay. Methods 45:227–232

    Article  PubMed  Google Scholar 

  53. Sossin WS, DesGroseillers L (2006) Intracellular trafficking of RNA in neurons. Traffic 7:1581–1589

    Article  CAS  PubMed  Google Scholar 

  54. Thompson RH, Swanson LW (2010) Hypothesis-driven structural connectivity: analysis supports network over hierarchical model of brain architecture. Proc Natl Acad Sci U S A 34:15235–15239

    Article  Google Scholar 

  55. Trifilieff P, Rives ML, Urizar E, Piskorowski RA, Vishwasrao HD, Castrillon J, Schmauss C, Slattman M, Gullberg M, Javitch JA (2011) Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. Biotechniques 51:111–118

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Ugolini G (2010) Advances in viral transneuronal tracing. J Neurosci Meth 194:2–20

    Article  Google Scholar 

  57. Veenman CL, Reiner A, Honig MG (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-label studies. J Neurosci Meth 41:239–254

    Article  CAS  Google Scholar 

  58. Zaborszky L, Wouterlood FG, Lanciego JL (2006) Neuroanatomical tract-tracing methods 3: molecules, neurons, and systems. Springer, New York, NY

    Google Scholar 

Download references

Acknowledgments

It is a great pleasure to acknowledge the continuous support received from colleagues, laboratory team members, and technicians. To mention just a few team members: Alberto J. Rico, Iria González-Dopeso, Salvador Sierra, Mónica Pérez-Manso, Pedro Barroso-Chinea, Natasha Luquin, Virginia Gómez-Bautista, Iciar P. López, Lorena Conte-Perales, Nancy Gonzalo, María Castle, and Elena Erro. Furthermore, I am also particularly indebted to my technician Elvira Roda who joined the laboratory more than 10 years ago and who still contributes continuously with new ideas and improvements. Moreover, it is also worth recognizing the extensive training that I received in the Department of Neuroanatomy and Neuropharmacology at the Amsterdam Vrije Universiteit under the guidance and mentorship of Floris G. Wouterlood, as well as from the laboratory technicians Barbara Jorritsma-Byham, Annaatje Pattiselanno, and Peter Goede. They all made my stay in Amsterdam (1992 and 1996) an easy, pleasant, and fruitful experience. Supported by grants from the Ministerio de Economía y Competitividad (BFU2012-37907, SAF2008-03118-E and SAF39875-C02-01), Eranet-Neuron (Heteropark), CiberNed (CB06/05/0006), Departamento de Salud, Gobierno de Navarra, and UTE project/Foundation for Applied Medical Research (FIMA). Salary for S.S. is partially supported by a grant from Mutual Médica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Lanciego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lanciego, J.L. (2015). Retrograde Tract-Tracing “Plus”: Adding Extra Value to Retrogradely Traced Neurons. In: Arenkiel, B. (eds) Neural Tracing Methods. Neuromethods, vol 92. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1963-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1963-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1962-8

  • Online ISBN: 978-1-4939-1963-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics