Skip to main content

Real-Time Visualization of Caspase-3 Activation by Fluorescence Resonance Energy Transfer (FRET)

  • Protocol
  • First Online:
Neuronal Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1254))

Abstract

As apoptosis occurs via a complex signaling cascade that is tightly regulated at multiple cell points, different methods exist to evaluate the activity of the proteins involved in the intracellular apoptotic pathways and the phenotype of apoptotic neurons . Detention of the activity of the enzyme caspase-3 , the key executioner caspase in programmed cell death , by laser scanning confocal fluorescence microscopy and the fluorescence resonance energy transfer technology is an alternative approach to classical standard techniques, such as Western blotting , activity assays, or histological techniques, and allows working with both fixed and living cells . This technique combined with the organotypic culture approach ex vivo represents a valid tool for the study of the mechanisms of neuronal survival /death and neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lossi L, Merighi A (2003) In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Progr Neurobiol 69:287–312

    Article  CAS  Google Scholar 

  2. Yuan J (1995) Molecular control of life and death. Curr Opin Cell Biol 7:211–214

    Article  CAS  PubMed  Google Scholar 

  3. Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  CAS  PubMed  Google Scholar 

  4. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  5. Cryns V, Yuan J (1998) Proteases to die for. Genes Dev 12:1551–1570

    Article  CAS  PubMed  Google Scholar 

  6. Blatt NB, Glick GD (2001) Signaling pathways and effector mechanisms pre-programmed cell death. Bioorg Med Chem 9:1371–1384

    Article  CAS  PubMed  Google Scholar 

  7. Adams JM, Cory S (2002) Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 14:715–720

    Article  CAS  PubMed  Google Scholar 

  8. Lossi L, Mioletti S, Aimar P, Bruno R, Merighi A (2002) In vivo analysis of cell proliferation and apoptosis in the CNS. In: Merighi A, Carmignoto G (eds) Cellular and molecular methods in neuroscience research. Springer, New York, pp 235–258

    Chapter  Google Scholar 

  9. Lee JH, Cheon YH, Woo RS et al (2012) Evidence of early involvement of apoptosis inducing factor-induced neuronal death in Alzheimer brain. Anat Cell Biol 45:26–37

    Article  PubMed Central  PubMed  Google Scholar 

  10. Zhu X, Raina AK, Perry G et al (2006) Apoptosis in Alzheimer disease: a mathematical improbability. Curr Alzheimer Res 3:393–396

    Article  CAS  PubMed  Google Scholar 

  11. Roth KA (2001) Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J Neuropathol Exp Neurol 60:829–838

    CAS  PubMed  Google Scholar 

  12. Lossi L, Alasia S, Salio C et al (2009) Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 88:221–245

    Article  PubMed  Google Scholar 

  13. Wood KA, Dipasquale B, Youle RJ (1993) In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron 11:621–632

    Article  CAS  PubMed  Google Scholar 

  14. Lakowicz JR, Gryczynski II, Gryczynski Z (1999) High throughput screening with multiphoton excitation. J Biomol Screen 4:355–362

    Article  CAS  PubMed  Google Scholar 

  15. Wu Y, Xing D, Luo S et al (2006) Detection of caspase-3 activation in single cells by fluorescence resonance energy transfer during photodynamic therapy induced apoptosis. Cancer Lett 235:239–247

    Article  CAS  PubMed  Google Scholar 

  16. Takemoto K, Nagai T, Miyawaki A et al (2003) Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol 160:235–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wu Y, Kim SG, Xing D et al (2007) Fluorescence resonance energy transfer analysis of bid activation in living cells during ultraviolet-induced apoptosis. Acta Biochim Biophys Sin (Shanghai) 39:37–45

    Google Scholar 

  18. Liu L, Wei G, Liu Z et al (2008) Two-photon excitation fluorescence resonance energy transfer with small organic molecule as energy donor for bioassay. Bioconjug Chem 19:574–579

    Article  CAS  PubMed  Google Scholar 

  19. Rodighiero S, Bazzini C, Ritter M et al (2008) Fixation, mounting and sealing with nail polish of cell specimens lead to incorrect FRET measurements using acceptor photobleaching. Cell Physiol Biochem 21:489–498

    Article  CAS  PubMed  Google Scholar 

  20. Feiner JR, Bickler PE, Estrada S et al (2005) Mild hypothermia, but not propofol, is neuroprotective in organotypic hippocampal cultures. Anesth Analg 100:215–225

    Article  CAS  PubMed  Google Scholar 

  21. Arsenault J, O'Brien JA (2013) Optimized heterologous transfection of viable adult organotypic brain slices using an enhanced gene gun. BMC Res Notes 6:544

    Article  PubMed Central  PubMed  Google Scholar 

  22. O’Brien JA, Lummis SC (2011) Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnol 11:66

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lossi L, Tamagno I, Merighi A (2004) Molecular morphology of neuronal apoptosis: activation of caspase 3 during postnatal development of mouse cerebellar cortex. J Mol Histol 35:621–629

    CAS  PubMed  Google Scholar 

  24. Merighi A, Alasia S, Gambino G, Lossi L (2012) Confocal imaging of organotypic brain slices for real time analysis of cell death. In: Méndez-Vilas A (ed) Current microscopy contributions to advances in science and technology. Formatex Research Center, Badajoz, Spain

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Lossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Alasia, S., Cocito, C., Merighi, A., Lossi, L. (2015). Real-Time Visualization of Caspase-3 Activation by Fluorescence Resonance Energy Transfer (FRET). In: Lossi, L., Merighi, A. (eds) Neuronal Cell Death. Methods in Molecular Biology, vol 1254. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2152-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2152-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2151-5

  • Online ISBN: 978-1-4939-2152-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics