Skip to main content

Design, Assembly, and Evaluation of RNA–Protein Nanostructures

  • Protocol
RNA Nanotechnology and Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1297))

Abstract

The use of RNA–protein interaction motifs (RNP motifs) to design and build nanoscale objects has the potential to expand the field of RNA nanotechnology. In principle, RNP motifs can be integrated easily into RNA nano objects, providing an alternative technique to increase the functional and structural complexities of the RNA. Investigating the design principles of RNP nanostructures will enable the construction of highly sophisticated biomacromolecular complexes such as ribosomes from scratch. As an initial step towards this goal, we designed and constructed triangular-like nanostructures by employing box C/D kink-turn (K-turn)-L7Ae RNP motifs. We showed that the K-turn RNA and the ribosomal protein L7Ae could form a nanostructure shaped like an equilateral triangle that consists of the three proteins attached to the tips of the RNA scaffold. The construction of the complex depends on L7Ae binding to the K-turn motifs in the RNA. The RNP motif allows the RNA to bend by approximately 60° at three positions to form a nanoscale triangle. Functional RNP triangles with desired protein modules at the three tips can be constructed in a modular manner. Here, we describe how to design, construct, and evaluate the RNP nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5(12):833–842. doi:10.1038/nnano.2010.231

    Article  CAS  Google Scholar 

  2. Guo P, Zhang C, Chen C, Garver K, Trottier M (1998) Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 2(1):149–155. doi:S1097-2765(00)80124-0 [pii]

    Article  CAS  Google Scholar 

  3. Chworos A, Severcan I, Koyfman AY, Weinkam P, Oroudjev E, Hansma HG, Jaeger L (2004) Building programmable jigsaw puzzles with RNA. Science 306(5704):2068–2072. doi:10.1126/science.1104686

    Article  CAS  Google Scholar 

  4. Severcan I, Geary C, Verzemnieks E, Chworos A, Jaeger L (2009) Square-shaped RNA particles from different RNA folds. Nano Lett 9(3):1270–1277. doi:10.1021/nl900261h

    Article  CAS  Google Scholar 

  5. Severcan I, Geary C, Chworos A, Voss N, Jacovetty E, Jaeger L (2010) A polyhedron made of tRNAs. Nat Chem 2(9):772–779. doi:10.1038/nchem.733

    Article  CAS  Google Scholar 

  6. Grabow WW, Zakrevsky P, Afonin KA, Chworos A, Shapiro BA, Jaeger L (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11(2):878–887. doi:10.1021/nl104271s

    Article  CAS  Google Scholar 

  7. Dibrov SM, McLean J, Parsons J, Hermann T (2011) Self-assembling RNA square. Proc Natl Acad Sci U S A 108(16):6405–6408. doi:10.1073/pnas.1017999108

    Article  CAS  Google Scholar 

  8. Selmer M, Dunham CM, Murphy FV, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313(5795):1935–1942. doi:10.1126/science.1131127

    Article  CAS  Google Scholar 

  9. Williamson JR (2000) Induced fit in RNA-protein recognition. Nat Struct Biol 7(10):834–837. doi:10.1038/79575

    Article  CAS  Google Scholar 

  10. Moore T, Zhang Y, Fenley MO, Li H (2004) Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure 12(5):807–818. doi:10.1016/j.str.2004.02.033

    Article  CAS  Google Scholar 

  11. Turner B, Melcher SE, Wilson TJ, Norman DG, Lilley DM (2005) Induced fit of RNA on binding the L7Ae protein to the kink-turn motif. RNA 11(8):1192–1200. doi:10.1261/rna.2680605

    Article  CAS  Google Scholar 

  12. Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333(6041):470–474. doi:10.1126/science.1206938

    Article  CAS  Google Scholar 

  13. Cusack S (1999) RNA-protein complexes. Curr Opin Struct Biol 9(1):66–73. doi:10.1016/S0959-440X(99)80009-8

    Article  CAS  Google Scholar 

  14. Saito H, Inoue T (2009) Synthetic biology with RNA motifs. Int J Biochem Cell Biol 41(2):398–404. doi:10.1016/j.biocel.2008.08.017

    Article  CAS  Google Scholar 

  15. Saito H, Kobayashi T, Hara T, Fujita Y, Hayashi K, Furushima R, Inoue T (2010) Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nat Chem Biol 6(1):71–78. doi:10.1038/nchembio.273

    Article  CAS  Google Scholar 

  16. Ohno H, Kobayashi T, Kabata R, Endo K, Iwasa T, Yoshimura SH, Takeyasu K, Inoue T, Saito H (2011) Synthetic RNA-protein complex shaped like an equilateral triangle. Nat Nanotechnol 6(2):115–119. doi:10.1038/nnano.2010.268

    Article  Google Scholar 

  17. Goodman RP, Schaap IA, Tardin CF, Erben CM, Berry RM, Schmidt CF, Turberfield AJ (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310(5754):1661–1665. doi:10.1126/science.1120367

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank T. Inoue (Kyoto University) for reading of the manuscript and making helpful suggestions. This work was supported by the International Cooperative Research Project (ICORP), JST. Part of the work was supported by the New Energy and Industrial Technology Development Organization (09A02021a), Grant-in-Aid for Young Scientists (A) (No. 23681042), and a Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Robotics” (No. 24104002) from The Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirohide Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ohno, H., Osada, E., Saito, H. (2015). Design, Assembly, and Evaluation of RNA–Protein Nanostructures. In: Guo, P., Haque, F. (eds) RNA Nanotechnology and Therapeutics. Methods in Molecular Biology, vol 1297. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2562-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2562-9_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2561-2

  • Online ISBN: 978-1-4939-2562-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics