Skip to main content

Infrared Surface Plasmon Spectroscopy Decodes Early Processes in Epithelial Host Cells upon Enteropathogenic Escherichia coli Infection

  • Protocol
Label-Free Biosensor Methods in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1216 Accesses

Abstract

Enteropathogenic Escherichia coli (EPEC) is a generally noninvasive bacterial pathogen that causes diarrhea in humans. This microbe infects mainly the enterocytes of the small intestine. In this chapter we describe newly developed method, infrared surface plasmon resonance (IR-SPR) spectroscopy, for sensing pathogen infection of living cells. The IR-SPR method enables real-time and label-free monitoring of EPEC infection through highly sensitive measurement of the refractive index and height of the host epithelial cell monolayer. Our findings indicate the great potential of the IR-SPR tool to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ochoa TJ, Contreras CA (2011) Enteropathogenic Escherichia coli infection in children. Curr Opin Infect Dis 24(5):478–483. doi:10.1097/QCO.0b013e32834a8b8b

    Article  PubMed Central  PubMed  Google Scholar 

  2. Frankel G, Phillips AD (2008) Attaching effacing Escherichia coli and paradigms of Tir-triggered actin polymerization: getting off the pedestal. Cell Microbiol 10(3):549–556. doi:10.1111/j.1462-5822.2007.01103.x

    Article  CAS  PubMed  Google Scholar 

  3. Croxen MA, Finlay BB (2010) Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8(1):26–38. doi:10.1038/nrmicro2265

    CAS  PubMed  Google Scholar 

  4. Aroeti B, Friedman G, Zlotkin-Rivkin E, Donnenberg M (2012) Retraction of enteropathogenic E. coli type IV pili promotes efficient host cell colonization, effector translocation and tight junction disruption. Gut Microbes 3(3):267–271. doi:10.4161/gmic.19814

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell pathways by bacterial pathogens. Nature 449(7164):827–834. doi:10.1038/nature06247

    Article  CAS  PubMed  Google Scholar 

  6. Goosney DL, Gruenheid S, Finlay BB (2000) Gut feelings: enteropathogenic E. coli (EPEC) interactions with the host. Annu Rev Cell Dev Biol 16:173–189. doi:10.1146/annurev.cellbio.16.1.173

    Article  CAS  PubMed  Google Scholar 

  7. Shifflett DE, Clayburgh DR, Koutsouris A, Turner JR, Hecht GA (2005) Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. Lab Invest 85(10):1308–1324. doi:10.1038/labinvest.3700330

    Article  CAS  PubMed  Google Scholar 

  8. Vallance BA, Finlay BB (2000) Exploitation of host cells by enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A 97(16):8799–8806. doi:10.1073/pnas.97.16.8799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Weflen AW, Alto NM, Hecht GA (2009) Tight junctions and enteropathogenic E. coli. Ann N Y Acad Sci 1165:169–174. doi:10.1111/j.1749-6632.2012.06563.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Guttman JA, Kazemi P, Lin AE, Vogl AW, Finlay BB (2007) Desmosomes are unaltered during infections by attaching and effacing pathogens. Anat Rec (Hoboken) 290(2):199–205

    Article  CAS  Google Scholar 

  11. Ivanov AI, Parkos CA, Nusrat A (2010) Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 177(2):512–524. doi:10.2353/ajpath.2010.100168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Shifrin Y, Kirschner J, Geiger B, Rosenshine I (2002) Enteropathogenic Escherichia coli induces modification of the focal adhesions of infected host cells. Cell Microbiol 4(4):235–243. doi:10.1046/j.1462-5822.2002.00188.x

    Article  CAS  PubMed  Google Scholar 

  13. Balda MS, Whitney JA, Flores C, González S, Cereijido M, Matter K (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134(4):1031–1049

    Article  CAS  PubMed  Google Scholar 

  14. Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J (2007) Restoration of barrier function in injured intestinal mucosa. Physiol Rev 87(2):545–564. doi:10.1152/physrev.00012.2006

    Article  CAS  PubMed  Google Scholar 

  15. Gookin JL, Galanko JA, Blikslager AT, Argenzio RA (2003) PG-mediated closure of paracellular pathway and not restitution is the primary determinant of barrier recovery in acutely injured porcine ileum. Am J Physiol Gastrointest Liver Physiol 285(5):G967–G979. doi:10.1152/ajpgi.00532.2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Simovitch M, Sason H, Cohen S, Zahavi EE, Melamed-Book N, Weiss A, Aroeti B, Rosenshine I (2010) EspM inhibits pedestal formation by enterohaemorrhagic Escherichia coli and enteropathogenic E. coli and disrupts the architecture of a polarized epithelial monolayer. Cell Microbiol 12(4):489–505. doi:10.1111/j.1462-5822.2009.01410.x

    Article  CAS  PubMed  Google Scholar 

  17. Golosovsky M, Lirtsman V, Yashunsky V, Davidov D, Aroeti B (2009) Midinfrared surface-plasmon resonance: a novel biophysical tool for studying living cells. J Appl Phys 105(10):1020–1021. doi:10.1063/1.3116143

    Article  Google Scholar 

  18. Yashunsky V, Lirtsman V, Zilbershtein A, Bein A, Schwartz B, Aroeti B, Golosovsky M, Davidov D (2012) Surface plasmon-based infrared spectroscopy for cell biosensing. J Biomed Opt 17(8):081409. doi:10.1117/1.JBO.17.8.081409

    Article  PubMed  Google Scholar 

  19. Ziblat R, Lirtsman V, Davidov D, Aroeti B (2006) Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells. Biophys J 90(7):2592–2599. doi:10.1529/biophysj.105.072090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Yashunsky V, Kharilker L, Zlotkin-Rivkin E, Rund D, Melamed-Book N, Zahavi EE, Perlson E, Mercone S, Golosovsky M, Davidov D, Aroeti B (2013) Real-time sensing of enteropathogenic E. coli-induced effects on epithelial host cell height, cell-substrate interactions, and endocytic processes by infrared surface plasmon spectroscopy. PLoS One 8(10):e78431. doi:10.1371/journal.pone.0078431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Yashunsky V, Lirtsman V, Golosovsky M, Davidov D, Aroeti B (2010) Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy. Biophys J 99(12):4028–4036. doi:10.1016/j.bpj.2010.10.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yashunsky V, Marciano T, Lirtsman V, Golosovsky M, Davidov D, Aroeti B (2012) Real-time sensing of cell morphology by infrared waveguide spectroscopy. PLoS One 7(10):e48454. doi:10.1371/journal.pone.0048454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zilbershtein A, Bein A, Lirtsman V, Schwartz B, Golosovsky M, Davidov D (2014) Surface plasmon resonance-based infrared biosensor for cell studies with simultaneous control. J Biomed Opt 19(11):111608. doi:10.1117/1.JBO.19.11.111608

    Article  PubMed  Google Scholar 

  24. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift fur Physik 216:398–410

    Article  CAS  Google Scholar 

  25. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light(Surface plasma waves excitation by light and decay into photons applied to nonradiative modes). Zeitschrift Fuer Naturforschung, Teil A 23:2135

    CAS  Google Scholar 

  26. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensor Actuator 4:299–304

    Article  CAS  Google Scholar 

  27. Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569–638

    Article  CAS  PubMed  Google Scholar 

  28. Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1(7):515–528. doi:10.1038/nrd838

    Article  CAS  PubMed  Google Scholar 

  29. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539. doi:10.1007/s00216-003-2101-0

    Article  CAS  PubMed  Google Scholar 

  30. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensor Actuator B Chem 54(1–2):3–15

    Article  CAS  Google Scholar 

  31. Fang Y (2011) The development of label-free cellular assays for drug discovery. Expert Opin Drug Discov 6(12):1285–1298. doi:10.1517/17460441.2012.642360

    Article  CAS  PubMed  Google Scholar 

  32. Stanley R (2012) Plasmonics in the mid-infrared. Nat Photon 6(7):409–411. doi:10.1038/nphoton.2012.161

    Article  CAS  Google Scholar 

  33. Peterson AW, Halter M, Tona A, Bhadriraju K, Plant AL (2009) Surface plasmon resonance imaging of cells and surface-associated fibronectin. BMC Cell Biol 10:1–17. doi:10.1186/1471-2121-10-16

    Article  Google Scholar 

  34. Chabot V, Cuerrier CM, Escher E, Aimez V, Grandbois M, Charette PG (2009) Biosensing based on surface plasmon resonance and living cells. Biosens Bioelectron 24(6):1667–1673. doi:10.1016/j.bios.2008.08.025

    Article  CAS  PubMed  Google Scholar 

  35. Yanase Y, Suzuki H, Tsutsui T, Hiragun T, Kameyoshi Y, Hide M (2007) The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions. Biosens Bioelectron 22(6):1081–1086. doi:10.1016/j.bios.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  36. Zilbershtein A, Golosovsky M, Lirtsman V, Aroeti B, Davidov D (2012) Quantitative surface plasmon spectroscopy: determination of the infrared optical constants of living cells. Vib Spectros 61:43–49. doi:10.1016/j.vibspec.2012.01.019

    Article  CAS  Google Scholar 

  37. Coe JV, Rodriguez KR, Teeters-Kennedy S, Cilwa K, Heer J, Tian H, Williams SM (2007) Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding. J Phys Chem C 111(47):17459–17472. doi:10.1021/jp072909a

    Article  CAS  Google Scholar 

  38. Raether H (1988) Surface-plasmons on smooth and rough surfaces and on gratings. Springer Tr Mod Phys 111:1–133

    Article  Google Scholar 

  39. Johansen K, Arwin H, Lundstrom I, Liedberg B (2000) Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations. Rev Sci Instrum 71(9):3530–3538

    Article  CAS  Google Scholar 

  40. Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th edn. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  41. Palik ED (1984) Handbook of optical-constants. J Opt Soc Am A Opt Image Sci Vis 1(12):1297–1297

    Google Scholar 

  42. Yashunsky V, Zilbershtein A, Lirtsman V, Marciano T, Aroeti B, Golosovsky M, Davidov D (2012) Infrared surface plasmon spectroscopy and biosensing. Proc. SPIE 8234, Plasmonics in Biology and Medicine IX, 823419; doi:10.1117/12.907255

  43. Levine MM, Bergquist EJ, Nalin DR, Waterman DH, Hornick RB, Young CR, Sotman S (1978) Escherichia coli strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet 1(8074):1119–1122

    Article  CAS  PubMed  Google Scholar 

  44. Nadler C, Shifrin Y, Nov S, Kobi S, Rosenshine I (2006) Characterization of enteropathogenic Escherichia coli mutants that fail to disrupt host cell spreading and attachment to substratum. Infect Immun 74(2):839–849. doi:10.1128/IAI. 74.2.839-849.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Rosenshine I, Ruschkowski S, Finlay BB (1996) Expression of attaching/effacing activity by enteropathogenic Escherichia coli depends on growth phase, temperature, and protein synthesis upon contact with epithelial cells. Infect Immun 64(3):966–973

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Gassama-Diagne A, Yu W, ter Beest M, Martin-Belmonte F, Kierbel A, Engel J, Mostov K (2006) Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol 8(9):963–970. doi:10.1038/ncb1461

    Article  CAS  PubMed  Google Scholar 

  47. Sason H, Milgrom M, Weiss AM, Melamed-Book N, Balla T, Grinstein S, Backert S, Rosenshine I, Aroeti B (2009) Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection. Mol Biol Cell 20(1):544–555. doi:10.1091/mbc.E08-05-0516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Coburn B, Sekirov I, Finlay BB (2007) Type III secretion systems and disease. Clin Microbiol Rev 20(4):535–549. doi:10.1128/CMR. 00013-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Xi B, Yu N, Wang X, Xu X, Abassi YA (2008) The application of cell-based label-free technology in drug discovery. Biotechnol J 3(4):484–495. doi:10.1002/biot.200800020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

VY deeply thanks Dan Davidov (HUJI) and Michael Golosovsky (HUJI) for their scientific guidance. We also thank Leorah Kharilker (HUJI), Efrat Zlotkin-Rivkin (HUJI), and Vladislav Lirtsman (HUJI) for helping with experiments; Ilan Rosenshine (HUJI) and Michael Donnenberg (UMD) for providing EPEC strains. BA acknowledges the support from the Start-Up grant Tack A from Yissum, the Israel Science Foundation (ISF), funded by the Israel Academy of Sciences (Grants 1167/08 and 1483/13), and a grant from the Israel Cancer Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Yashunsky .

Editor information

Editors and Affiliations

Glossary

EPEC

Enteropathogenic Escherichia coli

IR

Infrared

L x

Surface plasmon propagation length

MDCK

Madin-Darby canine kidney

SP

Surface plasmon

SPR

Surface plasmon resonance

T3SS

Type-III secretion system

TJ

Tight junction

TM

Transverse magnetic

δ z

Surface plasmon penetration depth

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yashunsky, V., Aroeti, B. (2015). Infrared Surface Plasmon Spectroscopy Decodes Early Processes in Epithelial Host Cells upon Enteropathogenic Escherichia coli Infection. In: Fang, Y. (eds) Label-Free Biosensor Methods in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2617-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2617-6_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2616-9

  • Online ISBN: 978-1-4939-2617-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics