Skip to main content

Genetic Tools to Study T Cell Development

  • Protocol
T-Cell Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1323))

Abstract

Genetics tools, and especially the ability to enforce, by transgenesis, or disrupt, by homologous recombination, gene expression in a cell-specific manner, have revolutionized the study of immunology and propelled the laboratory mouse as the main model to study immune responses. Perhaps more than any other aspect of immunology, the study of T cell development has benefited from these technologies. This brief chapter summarizes genetic tools specific to T cell development studies, focusing on mouse strains with lineage- and stage-specific expression of the Cre recombinase, or expressing unique antigen receptor specificities. It ends with a broader discussion of strategies to enforce ectopic lineage and stage-specific gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 124:4154–4161

    Article  CAS  PubMed  Google Scholar 

  2. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. de Boer J, Williams A, Skavdis G, Harker N, Coles M, Tolaini M, Norton T, Williams K, Roderick K, Potocnik AJ, Kioussis D (2003) Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol 33:314–325

    Article  PubMed  Google Scholar 

  4. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230:230–242

    Article  CAS  PubMed  Google Scholar 

  5. McCormack MP, Forster A, Drynan L, Pannell R, Rabbitts TH (2003) The LMO2 T-cell oncogene is activated via chromosomal translocations or retroviral insertion during gene therapy but has no mandatory role in normal T-cell development. Mol Cell Biol 23:9003–9013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Schlenner SM, Madan V, Busch K, Tietz A, Laufle C, Costa C, Blum C, Fehling HJ, Rodewald HR (2010) Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity 32:426–436

    Article  CAS  PubMed  Google Scholar 

  7. Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Perez-Melgosa M, Sweetser MT, Schlissel MS, Nguyen S, Cherry SR, Tsai JH, Tucker SM, Weaver WM, Kelso A, Jaenisch R, Wilson CB (2001) A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15:763–774

    Article  CAS  PubMed  Google Scholar 

  8. Hennet T, Hagen FK, Tabak LA, Marth JD (1995) T-cell-specific deletion of a polypeptide N-acetylgalactosaminyl-transferase gene by site-directed recombination. Proc Natl Acad Sci U S A 92:12070–12074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Shi J, Petrie HT (2012) Activation kinetics and off-target effects of thymus-initiated cre transgenes. PLoS One 7, e46590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Luche H, Nageswara Rao T, Kumar S, Tasdogan A, Beckel F, Blum C, Martins VC, Rodewald HR, Fehling HJ (2013) In vivo fate mapping identifies pre-TCRalpha expression as an intra- and extrathymic, but not prethymic, marker of T lymphopoiesis. J Exp Med 210:699–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Park JH, Adoro S, Guinter T, Erman B, Alag AS, Catalfamo M, Kimura MY, Cui Y, Lucas PJ, Gress RE, Kubo M, Hennighausen L, Feigenbaum L, Singer A (2010) Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat Immunol 11:257–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zou YR, Sunshine MJ, Taniuchi I, Hatam F, Killeen N, Littman DR (2001) Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat Genet 29:332–336

    Article  CAS  PubMed  Google Scholar 

  13. Maekawa Y, Minato Y, Ishifune C, Kurihara T, Kitamura A, Kojima H, Yagita H, Sakata-Yanagimoto M, Saito T, Taniuchi I, Chiba S, Sone S, Yasutomo K (2008) Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat Immunol 9:1140–1147

    Article  CAS  PubMed  Google Scholar 

  14. Zhang DJ, Wang Q, Wei J, Baimukanova G, Buchholz F, Stewart AF, Mao X, Killeen N (2005) Selective expression of the Cre recombinase in late-stage thymocytes using the distal promoter of the Lck gene. J Immunol 174:6725–6731

    Article  CAS  PubMed  Google Scholar 

  15. Vacchio MS, Wang L, Bouladoux N, Carpenter AC, Xiong Y, Williams LC, Wohlfert E, Song KD, Belkaid Y, Love PE, Bosselut R (2014) A ThPOK-LRF transcriptional node maintains the integrity and effector potential of post-thymic CD4 T cells. Nat Immunol 15(10):947–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mucida D, Husain MM, Muroi S, van Wijk F, Shinnakasu R, Naoe Y, Reis BS, Huang Y, Lambolez F, Docherty M, Attinger A, Shui JW, Kim G, Lena CJ, Sakaguchi S, Miyamoto C, Wang P, Atarashi K, Park Y, Nakayama T, Honda K, Ellmeier W, Kronenberg M, Taniuchi I, Cheroutre H (2013) Transcriptional reprogramming of mature CD4(+) helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat Immunol 14:281–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zhu J, Min B, Hu-Li J, Watson CJ, Grinberg A, Wang Q, Killeen N, Urban JFJ, Guo L, Paul WE (2004) Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat Immunol 5:1157–1165

    Article  CAS  PubMed  Google Scholar 

  18. Klinger M, Kim JK, Chmura SA, Barczak A, Erle DJ, Killeen N (2009) Thymic OX40 expression discriminates cells undergoing strong responses to selection ligands. J Immunol 182:4581–4589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Jacob J, Baltimore D (1999) Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399:593–597

    Article  CAS  PubMed  Google Scholar 

  20. Aghajani K, Keerthivasan S, Yu Y, Gounari F (2012) Generation of CD4CreER(T(2)) transgenic mice to study development of peripheral CD4-T-cells. Genesis 50:908–913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  CAS  PubMed  Google Scholar 

  22. Schmidt-Supprian M, Rajewsky K (2007) Vagaries of conditional gene targeting. Nat Immunol 8:665–668

    Article  CAS  PubMed  Google Scholar 

  23. Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, Jenkins MK (2007) Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27:203–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. von Boehmer H (1990) Developmental biology of T cells in T cell-receptor transgenic mice. Annu Rev Immunol 8:531–556

    Article  Google Scholar 

  25. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR (1994) T cell receptor antagonist peptides induce positive selection. Cell 76:17–27

    Article  CAS  PubMed  Google Scholar 

  26. Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, Werlen G, Hollander GA, Gascoigne NR, Palmer E (2006) Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444:724–729

    Article  CAS  PubMed  Google Scholar 

  27. Clarke SR, Barnden M, Kurts C, Carbone FR, Miller JF, Heath WR (2000) Characterization of the ovalbumin-specific TCR transgenic line OT-I: MHC elements for positive and negative selection. Immunol Cell Biol 78:110–117

    Article  CAS  PubMed  Google Scholar 

  28. Markiewicz MA, Girao C, Opferman JT, Sun J, Hu Q, Agulnik AA, Bishop CE, Thompson CB, Ashton-Rickardt PG (1998) Long-term T cell memory requires the surface expression of self-peptide/major histocompatibility complex molecules. Proc Natl Acad Sci U S A 95:3065–3070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Teh HS, Kishi H, Scott B, Von Boehmer H (1989) Deletion of autospecific T cells in T cell receptor (TCR) transgenic mice spares cells with normal TCR levels and low levels of CD8 molecules. J Exp Med 169:795–806

    Article  CAS  PubMed  Google Scholar 

  30. Kisielow P, Bluthmann H, Staerz UD, Steinmetz M, von Boehmer H (1988) Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333:742–746

    Article  CAS  PubMed  Google Scholar 

  31. Colf LA, Bankovich AJ, Hanick NA, Bowerman NA, Jones LL, Kranz DM, Garcia KC (2007) How a single T cell receptor recognizes both self and foreign MHC. Cell 129:135–146

    Article  CAS  PubMed  Google Scholar 

  32. Sha WC, Nelson CA, Newberry RD, Kranz DM, Russell JH, Loh DY (1988) Selective expression of an antigen receptor on CD8-bearing T lymphocytes in transgenic mice. Nature 335:271–274

    Article  CAS  PubMed  Google Scholar 

  33. Garcia KC, Tallquist MD, Pease LR, Brunmark A, Scott CA, Degano M, Stura EA, Peterson PA, Wilson IA, Teyton L (1997) Alphabeta T cell receptor interactions with syngeneic and allogeneic ligands: affinity measurements and crystallization. Proc Natl Acad Sci U S A 94:13838–13843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Pircher H, Burki K, Lang R, Hengartner H, Zinkernagel RM (1989) Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342:559–561

    Article  CAS  PubMed  Google Scholar 

  35. Mamalaki C, Elliott J, Norton T, Yannoutsos N, Townsend AR, Chandler P, Simpson E, Kioussis D (1993) Positive and negative selection in transgenic mice expressing a T-cell receptor specific for influenza nucleoprotein and endogenous superantigen. Dev Immunol 3:159–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Robertson JM, Jensen PE, Evavold BD (2000) DO11.10 and OT-II T cells recognize a C-terminal ovalbumin 323-339 epitope. J Immunol 164:4706–4712

    Article  CAS  PubMed  Google Scholar 

  37. Barnden MJ, Allison J, Heath WR, Carbone FR (1998) Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol Cell Biol 76:34–40

    Article  CAS  PubMed  Google Scholar 

  38. Murphy KM, Heimberger AB, Loh DY (1990) Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250:1720–1723

    Article  CAS  PubMed  Google Scholar 

  39. Kaye J, Vasquez NJ, Hedrick SM (1992) Involvement of the same region of the T cell antigen receptor in thymic selection and foreign peptide recognition. J Immunol 148:3342–3353

    CAS  PubMed  Google Scholar 

  40. Kaye J, Hsu ML, Sauron ME, Jameson SC, Gascoigne NR, Hedrick SM (1989) Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341:746–749

    Article  CAS  PubMed  Google Scholar 

  41. Seder RA, Paul WE, Davis MM, Fazekas de St Groth B (1992) The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med 176:1091–1098

    Article  CAS  PubMed  Google Scholar 

  42. Fink PJ, Matis LA, McElligott DL, Bookman M, Hedrick SM (1986) Correlations between T-cell specificity and the structure of the antigen receptor. Nature 321:219–226

    Article  CAS  PubMed  Google Scholar 

  43. Akkaraju S, Ho WY, Leong D, Canaan K, Davis MM, Goodnow CC (1997) A range of CD4 T cell tolerance: partial inactivation to organ-specific antigen allows nondestructive thyroiditis or insulitis. Immunity 7:255–271

    Article  CAS  PubMed  Google Scholar 

  44. Ho WY, Cooke MP, Goodnow CC, Davis MM (1994) Resting and anergic B cells are defective in CD28-dependent costimulation of naive CD4+ T cells. J Exp Med 179:1539–1549

    Article  CAS  PubMed  Google Scholar 

  45. Apostolou I, Von Boehmer H (2004) The TCR-HA, INS-HA transgenic model of autoimmune diabetes: limitations and expectations. J Autoimmun 22:111–114

    Article  CAS  PubMed  Google Scholar 

  46. Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, Kuchroo VK (2003) Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 197:1073–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Katz JD, Wang B, Haskins K, Benoist C, Mathis D (1993) Following a diabetogenic T cell from genesis through pathogenesis. Cell 74:1089–1100

    Article  CAS  PubMed  Google Scholar 

  48. Uematsu Y, Ryser S, Dembic Z, Borgulya P, Krimpenfort P, Berns A, von Boehmer H, Steinmetz M (1988) In transgenic mice the introduced functional T cell receptor beta gene prevents expression of endogenous beta genes. Cell 52:831–841

    Article  CAS  PubMed  Google Scholar 

  49. Fenton RG, Marrack P, Kappler JW, Kanagawa O, Seidman JG (1988) Isotypic exclusion of gamma delta T cell receptors in transgenic mice bearing a rearranged beta-chain gene. Science 241:1089–1092

    Article  CAS  PubMed  Google Scholar 

  50. Sarukhan A, Garcia C, Lanoue A, von Boehmer H (1998) Allelic inclusion of T cell receptor alpha genes poses an autoimmune hazard due to low-level expression of autospecific receptors. Immunity 8:563–570

    Article  CAS  PubMed  Google Scholar 

  51. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68:869–877

    Article  CAS  PubMed  Google Scholar 

  52. Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68:855–867

    Article  CAS  PubMed  Google Scholar 

  53. Huesmann M, Scott B, Kisielow P, von Boehmer H (1991) Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell 66:533–540

    Article  CAS  PubMed  Google Scholar 

  54. Bettini ML, Bettini M, Vignali DA (2012) T-cell receptor retrogenic mice: a rapid, flexible alternative to T-cell receptor transgenic mice. Immunology 136:265–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Hwang S, Song KD, Lesourne R, Lee J, Pinkhasov J, Li L, El-Khoury D, Love PE (2012) Reduced TCR signaling potential impairs negative selection but does not result in autoimmune disease. J Exp Med 209:1781–1795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Takahama Y, Shores EW, Singer A (1992) Negative selection of precursor thymocytes before their differentiation into CD4+CD8+ cells. Science 258:653–656

    Article  CAS  PubMed  Google Scholar 

  57. Bruno L, Fehling HJ, von Boehmer H (1996) The alpha beta T cell receptor can replace the gamma delta receptor in the development of gamma delta lineage cells. Immunity 5:343–352

    Article  CAS  PubMed  Google Scholar 

  58. DiPaolo RJ, Unanue ER (2001) The level of peptide-MHC complex determines the susceptibility to autoimmune diabetes: studies in HEL transgenic mice. Eur J Immunol 31:3453–3459

    Article  CAS  PubMed  Google Scholar 

  59. Byersdorfer CA, Schweitzer GG, Unanue ER (2005) Diabetes is predicted by the beta cell level of autoantigen. J Immunol 175:4347–4354

    Article  CAS  PubMed  Google Scholar 

  60. Baldwin TA, Sandau MM, Jameson SC, Hogquist KA (2005) The timing of TCR{alpha} expression critically influences T cell development and selection. J Exp Med 202:111–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Turner VM, Gardam S, Brink R (2010) Lineage-specific transgene expression in hematopoietic cells using a Cre-regulated retroviral vector. J Immunol Methods 360:162–166

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Bosselut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ciucci, T., Vacchio, M.S., Bosselut, R. (2016). Genetic Tools to Study T Cell Development. In: Bosselut, R., S. Vacchio, M. (eds) T-Cell Development. Methods in Molecular Biology, vol 1323. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2809-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2809-5_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2808-8

  • Online ISBN: 978-1-4939-2809-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics