Skip to main content

Generation of Targeted Mutations in Zebrafish Using the CRISPR/Cas System

  • Protocol
VEGF Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1332))

Abstract

Several strategies have been developed to generate targeted gene disruptions in zebrafish.

Here we developed a simple targeted gene inactivation strategy in zebrafish using a clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system. By injecting two simple in vitro-synthesized components [Cas9 mRNA and single guide (sgRNA)] into one-cell-stage embryos, mutations of the target gene could be efficiently generated. We used a codon-optimized version of Cas9 to improve its translation efficiency in zebrafish. In addition, we designed a cloning-free strategy to facilitate the synthesis of sgRNA. The system allows biallelic inactivation of multiple genes simultaneously by co-injecting a mix of sgRNAs with a single Cas9 construct. This flexible strategy of gene inactivation provides an efficient way to interrogate gene functions and genetic interactions in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnes DE (2001) Non-homologous end joining as a mechanism of DNA repair. Curr Biol 11:R455–R457

    Article  CAS  PubMed  Google Scholar 

  2. Mani M, Smith J, Kandavelou K et al (2005) Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem Biophys Res Commun 334:1191–1197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Urnov FD, Miller JC, Lee YL et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  CAS  PubMed  Google Scholar 

  4. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  5. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  6. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  8. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Jinek M, East A, Cheng A et al (2013) RNA-programmed genome editing in human cells. Elife 2:e00471

    Article  PubMed Central  PubMed  Google Scholar 

  11. Doyon Y, McCammon JM, Miller JC et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Meng X, Noyes MB, Zhu LJ et al (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Huang P, Xiao A, Zhou M et al (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700

    Article  PubMed  Google Scholar 

  14. Sander JD, Cade L, Khayter C et al (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hruscha A, Krawitz P, Rechenberg A et al (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140:4982–4987

    Article  CAS  PubMed  Google Scholar 

  16. Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110:13904–13909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chang N, Sun C, Gao L et al (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23:465–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Brouns SJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Article  CAS  PubMed  Google Scholar 

  21. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Nakata A, Amemura M, Makino K (1989) Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J Bacteriol 171:3553–3556

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Jansen R, Embden JD, Gaastra W et al (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575

    Article  CAS  PubMed  Google Scholar 

  24. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J et al (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182

    Article  CAS  PubMed  Google Scholar 

  25. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663

    Article  CAS  PubMed  Google Scholar 

  26. Bolotin A, Quinquis B, Sorokin A et al (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561

    Article  CAS  PubMed  Google Scholar 

  27. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  28. Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Makarova KS, Haft DH, Barrangou R et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  CAS  PubMed  Google Scholar 

  30. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Gagnon JA, Valen E, Thyme SB et al (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9:e98186

    Article  PubMed Central  PubMed  Google Scholar 

  32. Guschin DY, Waite AJ, Katibah GE et al (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 649:247–256

    Article  CAS  PubMed  Google Scholar 

  33. Hill JT, Demarest BL, Bisgrove BW et al (2014) Poly peak parser: method and software for identification of unknown indels using Sanger sequencing of polymerase chain reaction products. Dev Dyn 243:1632

    Article  CAS  PubMed  Google Scholar 

  34. Varshney GK, Pei W, LaFave MC et al (in press) High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res

    Google Scholar 

Download references

Acknowledgements

We thank Shawn Burgess for communicating unpublished data. This work was supported by R01DK088686 (to W.C.) from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbiao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yin, L., Jao, LE., Chen, W. (2015). Generation of Targeted Mutations in Zebrafish Using the CRISPR/Cas System. In: Fiedler, L. (eds) VEGF Signaling. Methods in Molecular Biology, vol 1332. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2917-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2917-7_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2916-0

  • Online ISBN: 978-1-4939-2917-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics