Skip to main content

Single-Molecule Live-Cell Visualization of Pre-mRNA Splicing

  • Protocol
Post-Transcriptional Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1358))

Abstract

Microscopy protocols that allow live-cell imaging of molecules and subcellular components tagged with fluorescent conjugates are indispensable in modern biological research. A breakthrough was recently introduced by the development of genetically encoded fluorescent tags that combined with fluorescence-based microscopic approaches of increasingly higher spatial and temporal resolution made it possible to detect single protein and nucleic acid molecules inside living cells. Here, we describe an approach to visualize single nascent pre-mRNA molecules and to measure in real time the dynamics of intron synthesis and excision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellinger PHA (1929) Mikroskopische beobachtungen an lebenden organen mit demonstrationen (Intravitalmikroskopie). Arch Exp Pathol Pharmak 147

    Google Scholar 

  2. Heimstädt O (1911) Das fluoreszenzmikroskop. Z Wiss Mikrosk 28:330–337

    Google Scholar 

  3. Ploem JS (1967) The use of a vertical illuminator with interchangeable dichroic mirrors for fluorescence microscopy with incidental light. Zeitschrift fur wissenschaftliche Mikroskopie und mikroskopische Technik 68:129–142

    CAS  PubMed  Google Scholar 

  4. Rino J, Braga J, Henriques R, Carmo-Fonseca M (2009) Frontiers in fluorescence microscopy. Int J Dev Biol 53:1569–1579

    Article  CAS  PubMed  Google Scholar 

  5. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  6. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501–12504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  PubMed  Google Scholar 

  8. Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135:1685–1700

    Article  CAS  PubMed  Google Scholar 

  9. Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445

    Article  CAS  PubMed  Google Scholar 

  10. Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R, Prasanth KV, Ried T, Shav-Tal Y, Bertrand E, Singer RH, Spector DL (2004) From silencing to gene expression: real-time analysis in single cells. Cell 116:683–698

    Article  CAS  PubMed  Google Scholar 

  11. Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM, Spector DL, Singer RH (2004) Dynamics of single mRNPs in nuclei of living cells. Science 304:1797–1800

    Article  CAS  PubMed  Google Scholar 

  12. Martin RM, Rino J, Carvalho C, Kirchhausen T, Carmo-Fonseca M (2013) Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity. Cell Rep 4:1144–1155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Schmidt U, Basyuk E, Robert MC, Yoshida M, Villemin JP, Auboeuf D, Aitken S, Bertrand E (2011) Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation. J Cell Biol 193:819–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Coulon A, Ferguson ML, de Turris V, Palangat M, Chow CC, Larson DR (2014) Kinetic competition during the transcription cycle results in stochastic RNA processing. eLife 3

    Google Scholar 

  15. O'Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251:1351–1355

    Article  PubMed  Google Scholar 

  16. Sauer B (1994) Site-specific recombination: developments and applications. Curr Opin Biotechnol 5:521–527

    Article  CAS  PubMed  Google Scholar 

  17. Johansson HE, Dertinger D, LeCuyer KA, Behlen LS, Greef CH, Uhlenbeck OC (1998) A thermodynamic analysis of the sequence-specific binding of RNA by bacteriophage MS2 coat protein. Proc Natl Acad Sci U S A 95:9244–9249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard JM, Singer RH, Bertrand E (2003) Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 13:161–167

    Article  CAS  PubMed  Google Scholar 

  19. Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH (2013) Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat Methods 10:119–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Tomas Kirchhausen and members of the Kirchhausen lab for advice and support during the development of this protocol. This work was supported by Fundação para a Ciência e Tecnologia, Portugal (PTDC/SAU-GMG/118180/2010; SFRH/BPD/66611/2009), and the Harvard Medical School-Portugal Program in Translational Research and Information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carmo-Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Martin, R.M., Rino, J., de Jesus, A.C., Carmo-Fonseca, M. (2016). Single-Molecule Live-Cell Visualization of Pre-mRNA Splicing. In: Dassi, E. (eds) Post-Transcriptional Gene Regulation. Methods in Molecular Biology, vol 1358. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3067-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3067-8_22

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3066-1

  • Online ISBN: 978-1-4939-3067-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics