Skip to main content

Sources of Experimental Variation in 2-D Maps: The Importance of Experimental Design in Gel-Based Proteomics

  • Protocol
2-D PAGE Map Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1384))

Abstract

The success of proteomic studies employing 2-D maps largely depends on the way surveys and experiments have been organized and performed. Planning gel-based proteomic experiments involves the selection of equipment, methodology, treatments, types and number of samples, experimental layout, and methods for data analysis. A good experimental design will maximize the output of the experiment while taking into account the biological and technical resources available. In this chapter we provide guidelines to assist proteomics researchers in all these choices and help them to design quantitative 2-DE experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria

    Google Scholar 

  2. Martin J (2012) pamm: Power analysis for random effects in mixed models. R package version 0.7

    Google Scholar 

  3. Tibshirani R, Chu G, Narasimhan B et al. (2011) samr: Significance analysis of microarrays. R package version 2.0

    Google Scholar 

  4. W GR (2009) ssize: Compute and plot power, required sample-size, or detectable effect size for gene expression experiment. R package version 1.28.0

    Google Scholar 

  5. Nyangoma S (2014) clippda package: A package for clinical proteomic profiling data analysis. R package version 1.14.0

    Google Scholar 

  6. Lenth R (2001) Some practical guidelines for effective sample size determination. Am Statistician 55:187–193

    Article  Google Scholar 

  7. Alge CS, Hauck SM, Priglinger SG et al. (2006) Differential protein profiling of primary versus immortalized human RPE cells identifies expression patterns associated with cytoskeletal remodeling and cell survival. J Proteome Res 5:862–878

    Article  CAS  PubMed  Google Scholar 

  8. Karp NA, Lilley KS (2007) Design and analysis issues in quantitative proteomics studies. Proteomics 7:42–50

    Article  PubMed  Google Scholar 

  9. Jorge I, Navarro RM, Lenz C et al. (2005) The holm Oak leaf proteome: analytical and biological variability in the protein expression level assessed by 2‐DE and protein identification tandem mass spectrometry de novo sequencing and sequence similarity searching. Proteomics 5:222–234

    Article  CAS  PubMed  Google Scholar 

  10. Richter SH, Garner JP, Auer C et al. (2010) Systematic variation improves reproducibility of animal experiments. Nat Methods 7:167–168

    Article  CAS  PubMed  Google Scholar 

  11. Karp NA, Lilley KS (2005) Maximising sensitivity for detecting changes in protein expression: experimental design using minimal CyDyes. Proteomics 5:3105–3115

    Article  CAS  PubMed  Google Scholar 

  12. Corzett TH, Fodor IK, Choi MW et al. (2006) Statistical analysis of the experimental variation in the proteomic characterization of human plasma by two-dimensional difference gel electrophoresis. J Proteome Res 5:2611–2619

    Article  CAS  PubMed  Google Scholar 

  13. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    Article  CAS  PubMed  Google Scholar 

  14. Wheelock ÅM, Morin D, Bartosiewicz M et al. (2006) Use of a fluorescent internal protein standard to achieve quantitative two‐dimensional gel electrophoresis. Proteomics 6:1385–1398

    Article  CAS  PubMed  Google Scholar 

  15. Lee JK (2011) Statistical bioinformatics: for biomedical and life science researchers. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  16. Karp NA, Spencer M, Lindsay H et al. (2005) Impact of replicate types on proteomic expression analysis. J Proteome Res 4:1867–1871

    Article  CAS  PubMed  Google Scholar 

  17. Hunt SM, Thomas MR, Sebastian LT et al. (2005) Optimal replication and the importance of experimental design for gel-based quantitative proteomics. J Proteome Res 4:809–819

    Article  CAS  PubMed  Google Scholar 

  18. Chich J-F, David O, Villers F et al. (2007) Statistics for proteomics: experimental design and 2-DE differential analysis. J Chromatogr B 849:261–272

    Article  CAS  Google Scholar 

  19. Karp NA, Lilley KS (2009) Investigating sample pooling strategies for DIGE experiments to address biological variability. Proteomics 9:388–397

    Article  CAS  PubMed  Google Scholar 

  20. Valcu C-M, Valcu M (2007) Reproducibility of two-dimensional gel electrophoresis at different replication levels. J Proteome Res 6:4677–4683

    Article  CAS  PubMed  Google Scholar 

  21. Ruxton G, Colegrave N (2011) Experimental design for the life sciences. Oxford University Press, Oxford

    Google Scholar 

  22. Krzywinski M, Altman N, Blainey P (2014) Points of Significance: Nested designs. Nat Methods 11:977–978

    Article  CAS  PubMed  Google Scholar 

  23. Kowalski SM, Potcner KJ (2003) How to recognize a split-plot experiment. Quality Progress 36:60–66

    Google Scholar 

  24. Valcu C-M, Reger K, Ebner J et al. (2012) Accounting for biological variation in differential display two-dimensional electrophoresis experiments. J Proteomics 75:3585–3591

    Article  CAS  PubMed  Google Scholar 

  25. Horgan GW (2007) Sample size and replication in 2D gel electrophoresis studies. J Proteome Res 6:2884–2887

    Article  CAS  PubMed  Google Scholar 

  26. Aberson CL (2011) Applied power analysis for the behavioral sciences. Routledge, New York, NY

    Google Scholar 

  27. Zhang S-D, Gant TW (2005) Effect of pooling samples on the efficiency of comparative studies using microarrays. Bioinformatics 21:4378–4383

    Article  CAS  PubMed  Google Scholar 

  28. Bahrman N, Zivy M, Damerval C et al. (1994) Organisation of the variability of abundant proteins in seven geographical origins of maritime pine (Pinus pinaster Ait.). Theor Appl Genet 88:407–411

    CAS  PubMed  Google Scholar 

  29. Westermeier R, Marouga R (2005) Protein detection methods in proteomics research. Biosci Rep 25:19–32

    Article  CAS  PubMed  Google Scholar 

  30. Ferguson RE, Hochstrasser DF, Banks RE (2007) Impact of preanalytical variables on the analysis of biological fluids in proteomic studies. Proteomics-Clin Appl 1:739–746

    Article  CAS  PubMed  Google Scholar 

  31. Pasella S, Baralla A, Canu E et al. (2013) Pre-analytical stability of the plasma proteomes based on the storage temperature. Proteome Sci 11:10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hulmes JD, Bethea D, Ho K et al. (2004) An investigation of plasma collection, stabilization, and storage procedures for proteomic analysis of clinical samples. Clin Proteomics 1:17–31

    Article  CAS  Google Scholar 

  33. Shaw J, Rowlinson R, Nickson J et al. (2003) Evaluation of saturation labelling two‐dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3:1181–1195

    Article  CAS  PubMed  Google Scholar 

  34. Valcu C-M, Junqueira M, Shevchenko A et al. (2009) Comparative proteomic analysis of responses to pathogen infection and wounding in Fagus sylvatica. J Proteome Res 8:4077–4091

    Article  CAS  PubMed  Google Scholar 

  35. Khoudoli GA, Porter IM, Blow JJ et al. (2004) Optimisation of the two-dimensional gel electrophoresis protocol using the Taguchi approach. Proteome Sci 2:6

    Article  PubMed Central  PubMed  Google Scholar 

  36. Lansky D (2001) Strip-plot designs, mixed models, and comparisons between linear and non-linear models for microtitre plate bioassays. Dev Biol 107:11–23

    Google Scholar 

  37. Castelloe JM (2000) Sample size computations and power analysis with the SAS system. In: Proceedings of the Twenty-Fifth Annual SAS User’s Group International Conference. Citeseer, p 265–225

    Google Scholar 

  38. Valcu M, Valcu C-M (2011) Data transformation practices in biomedical sciences. Nat Methods 8:104–105

    Article  CAS  PubMed  Google Scholar 

  39. Karp NA, Mccormick PS, Russell MR et al. (2007) Experimental and statistical considerations to avoid false conclusions in proteomics studies using differential in-gel electrophoresis. Mol Cell Proteomics 6:1354–1364

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Valcu, CM., Valcu, M. (2016). Sources of Experimental Variation in 2-D Maps: The Importance of Experimental Design in Gel-Based Proteomics. In: Marengo, E., Robotti, E. (eds) 2-D PAGE Map Analysis. Methods in Molecular Biology, vol 1384. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3255-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3255-9_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3254-2

  • Online ISBN: 978-1-4939-3255-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics