Skip to main content

Dendrites: Recording from Fine Neuronal Structures Using Patch-Clamp and Imaging Techniques

  • Protocol
  • First Online:
Advanced Patch-Clamp Analysis for Neuroscientists

Part of the book series: Neuromethods ((NM,volume 113))

  • 1703 Accesses

Abstract

Dendrites are the principal site of synaptic input onto neurons but despite their importance in neuronal signaling, little is known about how they receive and transform this input. This is due largely to their typically submicron size, which has historically rendered them inaccessible for direct recording. However, the advent of electrophysiological patch-clamp and advanced imaging techniques over the past few decades has opened this field of research. Fuelled by Rall’s theory of active dendritic integration, intracellular recording techniques proved that dendrites do indeed have active conductances which modify synaptic input and thereby alter neuronal output in response to certain patterns of information. Furthermore, advances in fluorescence imaging have highlighted the importance of dendritic activity during sensory processing and behavior. Here we summarize advances in experimental methods, namely electrophysiological and fluorescence imaging techniques, which have improved the accessibility of recording from fine dendritic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deiters O (1865) Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugethiere. Vieweg, Braunschweig

    Book  Google Scholar 

  2. Cajal SR (1889) The dynamic clamp comes of age. Med Pract 2:341–346

    Google Scholar 

  3. Brock LG, Eccles JC, Rall W (1951) Experimental investigations on the afferent fibres in muscle nerves. Proc R Soc Lond Ser B Biol Sci 138:453–475

    Article  CAS  Google Scholar 

  4. Bullock TH, Hagiwara S (1957) Intracellular recording from the giant synapse of the squid. J Gen Physiol 40:565–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eccles RM (1955) Intracellular potentials recorded from a mammalian sympathetic ganglion. J Physiol 130:572–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rall W (1977) Core conductor theory and cable properties of neurons. In: Kandel E, Brookhart J, Mountcastle V (eds) Handbook of physiology, the nervous system, vol 1, 2nd edn, Cellular biology of neurons. Oxford University Press, Oxford, pp 39–97

    Google Scholar 

  7. Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183:1592–1593

    Article  CAS  PubMed  Google Scholar 

  9. Segev I, Rall W (1998) Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends Neurosci 21:453–460. doi:10.1016/S0166-2236(98)01327-7

    Article  CAS  PubMed  Google Scholar 

  10. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    Article  CAS  PubMed  Google Scholar 

  11. Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflügers Arch 375:219–228

    Article  CAS  PubMed  Google Scholar 

  12. Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflügers Arch 423:511–518

    Article  CAS  PubMed  Google Scholar 

  13. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72. doi:10.1038/367069a0

    Article  CAS  PubMed  Google Scholar 

  14. Magee JC, Johnston D (1995) Characterization of single voltage-gated Na + and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487(Pt 1):67–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stuart G, Häusser M (1994) Initiation and spread of sodium action potentials in cerebellar purkinje cells. Neuron 13:703–712. doi:10.1016/0896-6273(94)90037-X

    Article  CAS  PubMed  Google Scholar 

  16. Magee JC (2007) Dendritic voltage-gated ion channels. In: Stuart GJ, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 225–250

    Chapter  Google Scholar 

  17. Dan Y, Poo M-M (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30. doi:10.1016/j.neuron.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  18. Larkum ME, Nevian T (2008) Synaptic clustering by dendritic signalling mechanisms. Curr Opin Neurobiol 18:321–331. doi:10.1016/j.conb.2008.08.013

    Article  CAS  PubMed  Google Scholar 

  19. Ariav G, Polsky A, Schiller J (2003) Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J Neurosci 23:7750–7758

    CAS  PubMed  Google Scholar 

  20. Gasparini S, Magee JC (2006) State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci 26:2088–2100. doi:10.1523/JNEUROSCI.4428-05.2006

    Article  CAS  PubMed  Google Scholar 

  21. Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50:291–307. doi:10.1016/j.neuron.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  22. Milojkovic BA, Wuskell JP, Loew LM, Antic SD (2005) Initiation of sodium spikelets in basal dendrites of neocortical pyramidal neurons. J Membr Biol 208:155–169. doi:10.1007/s00232-005-0827-7

    Article  CAS  PubMed  Google Scholar 

  23. Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338–341. doi:10.1038/18686

    Article  CAS  PubMed  Google Scholar 

  24. Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol 505(Pt 3):605–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Branco T, Häusser M (2011) Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69:885–892. doi:10.1016/j.neuron.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  26. Larkum ME, Nevian T, Sandler M et al (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756–760. doi:10.1126/science.1171958

    Article  CAS  PubMed  Google Scholar 

  27. Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627. doi:10.1038/nn1253

    Article  CAS  PubMed  Google Scholar 

  28. Lavzin M, Rapoport S, Polsky A et al (2012) Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490:397–401. doi:10.1038/nature11451

    Article  CAS  PubMed  Google Scholar 

  29. Palmer LM, Shai AS, Reeve JE et al (2014) NMDA spikes enhance action potential generation during sensory input. Nat Neurosci 17:383–390. doi:10.1038/nn.3646

    Article  CAS  PubMed  Google Scholar 

  30. Xu N, Harnett MT, Williams SR et al (2012) Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492:247–251. doi:10.1038/nature11601

    Article  CAS  PubMed  Google Scholar 

  31. Rubio-Garrido P, Pérez-de-Manzo F, Porrero C et al (2009) Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex 19:2380–2395. doi:10.1093/cercor/bhn259

    Article  PubMed  Google Scholar 

  32. Cauller LJ, Clancy B, Connors BW (1998) Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J Comp Neurol 390:297–310

    Article  CAS  PubMed  Google Scholar 

  33. Witter MP, Groenewegen HJ (1986) Connections of the parahippocampal cortex in the cat. III. Cortical and thalamic efferents. J Comp Neurol 252:1–31. doi:10.1002/cne.902520102

    Article  CAS  PubMed  Google Scholar 

  34. Larkman AU (1991) Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. J Comp Neurol 306:307–319. doi:10.1002/cne.903060207

    Article  CAS  PubMed  Google Scholar 

  35. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  PubMed  Google Scholar 

  36. Amaral DG, Lavenex P (2006) Hippocampal neuroanatomy. In: Andersen P, Morris R, Bliss T, O’Keefe J (eds) Hippocampus book. Oxford University Press, Oxford, pp 37–114

    Google Scholar 

  37. Kim J-M, Hwa J, Garriga P et al (2005) Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. Biochemistry 44:2284–2292. doi:10.1021/bi048328i

    Article  CAS  PubMed  Google Scholar 

  38. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945. doi:10.1073/pnas.1936192100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. doi:10.1146/annurev-neuro-061010-113817

    Article  CAS  PubMed  Google Scholar 

  40. Losonczy A, Zemelman BV, Vaziri A, Magee JC (2010) Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons. Nat Neurosci 13:967–972. doi:10.1038/nn.2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Buzsáki G, Penttonen M, Nádasdy Z, Bragin A (1996) Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc Natl Acad Sci U S A 93:9921–9925

    Article  PubMed  PubMed Central  Google Scholar 

  42. Helmchen F, Svoboda K, Denk W, Tank DW (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:989–996. doi:10.1038/14788

    Article  CAS  PubMed  Google Scholar 

  43. Smith SL, Smith IT, Branco T, Häusser M (2013) Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature 503:115–120. doi:10.1038/nature12600

    Article  CAS  PubMed  Google Scholar 

  44. Svoboda K, Helmchen F, Denk W, Tank DW (1999) Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo. Nat Neurosci 2:65–73. doi:10.1038/4569

    Article  CAS  PubMed  Google Scholar 

  45. Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflügers Arch 414:600–612

    Article  CAS  PubMed  Google Scholar 

  46. Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  47. Moyer JR, Brown TH (2002) Patch-clamp techniques applied to brain slices. Patch-clamp analysis. Humana Press, Totowa, NJ, pp 135–194

    Google Scholar 

  48. Davie JT, Kole MHP, Letzkus JJ et al (2006) Dendritic patch-clamp recording. Nat Protoc 1:1235–1247. doi:10.1038/nprot.2006.164

    Article  CAS  PubMed  Google Scholar 

  49. Kirov SA, Petrak LJ, Fiala JC, Harris KM (2004) Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus. Neuroscience 127:69–80. doi:10.1016/j.neuroscience.2004.04.053

    Article  CAS  PubMed  Google Scholar 

  50. Feig S, Lipton P (1990) N-methyl-D-aspartate receptor activation and Ca2+ account for poor pyramidal cell structure in hippocampal slices. J Neurochem 55:473–483

    Article  CAS  PubMed  Google Scholar 

  51. Ganong AH, Lanthorn TH, Cotman CW (1983) Kynurenic acid inhibits synaptic and acidic amino acid-induced responses in the rat hippocampus and spinal cord. Brain Res 273:170–174

    Article  CAS  PubMed  Google Scholar 

  52. Aghajanian GK, Rasmussen K (1989) Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3:331–338. doi:10.1002/syn.890030406

    Article  CAS  PubMed  Google Scholar 

  53. Rothman SM (1985) The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci 5:1483–1489

    CAS  PubMed  Google Scholar 

  54. Kuenzi FM, Fitzjohn SM, Morton RA et al (2000) Reduced long-term potentiation in hippocampal slices prepared using sucrose-based artificial cerebrospinal fluid. J Neurosci Methods 100:117–122

    Article  CAS  PubMed  Google Scholar 

  55. Magee JC, Avery RB, Christie BR, Johnston D (1996) Dihydropyridine-sensitive, voltage-gated Ca2+ channels contribute to the resting intracellular Ca2+ concentration of hippocampal CA1 pyramidal neurons. J Neurophysiol 76:3460–3470

    CAS  PubMed  Google Scholar 

  56. Dodt H-U, Zieglgänsberger W (1990) Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy. Brain Res 537:333–336. doi:10.1016/0006-8993(90)90380-T

    Article  CAS  PubMed  Google Scholar 

  57. Dodt H-U, Frick A, Kampe K, Zieglgänsberger W (1998) NMDA and AMPA receptors on neocortical neurons are differentially distributed. Eur J Neurosci 10:3351–3357. doi:10.1046/j.1460-9568.1998.00338.x

    Article  CAS  PubMed  Google Scholar 

  58. Spruston N, Stuart G, Hausser M (2007) Dendritic integration. In: Stuart GJ, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 351–399

    Google Scholar 

  59. Robinson HPC, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Methods 49:157–165. doi:10.1016/0165-0270(93)90119-C

    Article  CAS  PubMed  Google Scholar 

  60. Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci 16:389–394. doi:10.1016/0166-2236(93)90004-6

    Article  CAS  PubMed  Google Scholar 

  61. Prinz AA, Abbott LF, Marder E (2004) The dynamic clamp comes of age. Trends Neurosci 27:218–224. doi:10.1016/j.tins.2004.02.004

    Article  CAS  PubMed  Google Scholar 

  62. Gasparini S, Migliore M, Magee JC (2004) On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci 24:11046–11056. doi:10.1523/JNEUROSCI.2520-04.2004

    Article  CAS  PubMed  Google Scholar 

  63. Ledergerber D, Larkum ME (2010) Properties of layer 6 pyramidal neuron apical dendrites. J Neurosci 30:13031–13044. doi:10.1523/JNEUROSCI.2254-10.2010

    Article  CAS  PubMed  Google Scholar 

  64. Nevian T, Larkum ME, Polsky A, Schiller J (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10:206–214. doi:10.1038/nn1826

    Article  CAS  PubMed  Google Scholar 

  65. Colbert CM, Johnston D (1998) Protein kinase C activation decreases activity-dependent attenuation of dendritic Na + current in hippocampal CA1 pyramidal neurons. J Neurophysiol 79:491–495

    CAS  PubMed  Google Scholar 

  66. Gasparini S, Magee JC (2002) Phosphorylation-dependent differences in the activation properties of distal and proximal dendritic Na + channels in rat CA1 hippocampal neurons. J Physiol 541:665–672. doi:10.1113/jphysiol.2002.020503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Andrasfalvy BK, Magee JC (2001) Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. J Neurosci 21:9151–9159

    CAS  PubMed  Google Scholar 

  68. Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92:145–159

    Article  CAS  PubMed  Google Scholar 

  69. Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875. doi:10.1038/43119

    Article  CAS  PubMed  Google Scholar 

  70. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  CAS  PubMed  Google Scholar 

  71. Ashley CC, Ridgway EB (1968) Simultaneous recording of membrane potential, calcium transient and tension in single muscle fibers. Nature 219:1168–1169

    Article  CAS  PubMed  Google Scholar 

  72. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  PubMed  Google Scholar 

  73. Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Article  CAS  PubMed  Google Scholar 

  74. Gordon U, Polsky A, Schiller J (2006) Plasticity compartments in basal dendrites of neocortical pyramidal neurons. J Neurosci 26:12717–12726. doi:10.1523/JNEUROSCI.3502-06.2006

    Google Scholar 

  75. Grienberger C, Chen X, Konnerth A (2014) NMDA receptor-dependent multidendrite Ca(2+) spikes required for hippocampal burst firing in vivo. Neuron 81:1274–1281. doi:10.1016/j.neuron.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  76. Hill DN, Varga Z, Jia H et al (2013) Multibranch activity in basal and tuft dendrites during firing of layer 5 cortical neurons in vivo. Proc Natl Acad Sci U S A 110:13618–13623. doi:10.1073/pnas.1312599110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jia H, Rochefort NL, Chen X, Konnerth A (2010) Dendritic organization of sensory input to cortical neurons in vivo. Nature 464:1307–1312. doi:10.1038/nature08947

    Article  CAS  PubMed  Google Scholar 

  78. Larkum ME, Waters J, Sakmann B, Helmchen F (2007) Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. J Neurosci 27:8999–9008. doi:10.1523/JNEUROSCI.1717-07.2007

    Article  CAS  PubMed  Google Scholar 

  79. Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404:285–289. doi:10.1038/35005094

    Article  CAS  PubMed  Google Scholar 

  80. Varga Z, Jia H, Sakmann B, Konnerth A (2011) Dendritic coding of multiple sensory inputs in single cortical neurons in vivo. Proc Natl Acad Sci U S A 108:15420–15425. doi:10.1073/pnas.1112355108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Takahashi H, Magee JC (2009) Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62:102–111. doi:10.1016/j.neuron.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  82. Holthoff K, Kovalchuk Y, Konnerth A (2006) Dendritic spikes and activity-dependent synaptic plasticity. Cell Tissue Res 326:369–377. doi:10.1007/s00441-006-0263-8

    Article  PubMed  Google Scholar 

  83. Losonczy A, Makara JK, Magee JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452:436–441. doi:10.1038/nature06725

    Article  CAS  PubMed  Google Scholar 

  84. Gasparini S, Losonczy A, Chen X et al (2007) Associative pairing enhances action potential back-propagation in radial oblique branches of CA1 pyramidal neurons. J Physiol 580:787–800. doi:10.1113/jphysiol.2006.121343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Harnett MT, Makara JK, Spruston N et al (2012) Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491:599–602. doi:10.1038/nature11554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Murayama M, Pérez-Garci E, Nevian T et al (2009) Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457:1137–1141. doi:10.1038/nature07663

    Article  CAS  PubMed  Google Scholar 

  87. Waters J, Helmchen F (2004) Boosting of action potential backpropagation by neocortical network activity in vivo. J Neurosci 24:11127–11136. doi:10.1523/JNEUROSCI.2933-04.2004

    Article  CAS  PubMed  Google Scholar 

  88. Waters J, Larkum M, Sakmann B, Helmchen F (2003) Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J Neurosci 23:8558–8567

    CAS  PubMed  Google Scholar 

  89. Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887. doi:10.1038/42264

    Article  CAS  PubMed  Google Scholar 

  90. Dreosti E, Odermatt B, Dorostkar MM, Lagnado L (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6:883–889. doi:10.1038/nmeth.1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Margolis DJ, Lütcke H, Schulz K et al (2012) Reorganization of cortical population activity imaged throughout long-term sensory deprivation. Nat Neurosci 15:1539–1546. doi:10.1038/nn.3240

    Article  CAS  PubMed  Google Scholar 

  92. Harnett MT, Xu N-L, Magee JC, Williams SR (2013) Potassium channels control the interaction between active dendritic integration compartments in layer 5 cortical pyramidal neurons. Neuron 79:516–529. doi:10.1016/j.neuron.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  93. Akerboom J, Chen T-W, Wardill TJ et al (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32:13819–13840. doi:10.1523/JNEUROSCI.2601-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mao T, O’Connor DH, Scheuss V et al (2008) Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS One 3:e1796. doi:10.1371/journal.pone.0001796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Chen T-W, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300. doi:10.1038/nature12354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dittgen T, Nimmerjahn A, Komai S et al (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci U S A 101:18206–18211. doi:10.1073/pnas.0407976101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Monahan PE, Samulski RJ (2000) Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 6:433–440

    Article  CAS  PubMed  Google Scholar 

  98. Minta A, Tsien RY (1989) Fluorescent indicators for cytosolic sodium. J Biol Chem 264:19449–19457

    CAS  PubMed  Google Scholar 

  99. Callaway JC, Ross WN (1997) Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons. J Neurophysiol 77:145–152

    CAS  PubMed  Google Scholar 

  100. Knöpfel T, Anchisi D, Alojado ME et al (2000) Elevation of intradendritic sodium concentration mediated by synaptic activation of metabotropic glutamate receptors in cerebellar Purkinje cells. Eur J Neurosci 12:2199–2204

    Article  PubMed  Google Scholar 

  101. Lasser-Ross N, Ross WN (1992) Imaging voltage and synaptically activated sodium transients in cerebellar Purkinje cells. Proc Biol Sci 247:35–39. doi:10.1098/rspb.1992.0006

    Article  CAS  PubMed  Google Scholar 

  102. Mittmann T, Linton SM, Schwindt P, Crill W (1997) Evidence for persistent Na + current in apical dendrites of rat neocortical neurons from imaging of Na + -sensitive dye. J Neurophysiol 78:1188–1192

    CAS  PubMed  Google Scholar 

  103. Myoga MH, Beierlein M, Regehr WG (2009) Somatic spikes regulate dendritic signaling in small neurons in the absence of backpropagating action potentials. J Neurosci 29:7803–7814. doi:10.1523/JNEUROSCI.0030-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rose CR, Kovalchuk Y, Eilers J, Konnerth A (1999) Two-photon Na + imaging in spines and fine dendrites of central neurons. Pflügers Arch 439:201–207

    CAS  PubMed  Google Scholar 

  105. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. doi:10.1146/annurev.biochem.67.1.509

    Article  CAS  PubMed  Google Scholar 

  106. Holtmaat A, Bonhoeffer T, Chow DK et al (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:1128–1144. doi:10.1038/nprot.2009.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zuo Y, Yang G, Kwon E, Gan W-B (2005) Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436:261–265. doi:10.1038/nature03715

    Article  CAS  PubMed  Google Scholar 

  108. Liston C, Cichon JM, Jeanneteau F et al (2013) Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat Neurosci 16:698–705. doi:10.1038/nn.3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu T, Yu X, Perlik AJ et al (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462:915–919. doi:10.1038/nature08389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen JL, Villa KL, Cha JW et al (2012) Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74:361–373. doi:10.1016/j.neuron.2012.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Druckmann S, Feng L, Lee B et al (2014) Structured synaptic connectivity between hippocampal regions. Neuron 81:629–640. doi:10.1016/j.neuron.2013.11.026

    Article  CAS  PubMed  Google Scholar 

  112. Kim J, Zhao T, Petralia RS et al (2012) mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat Methods 9:96–102. doi:10.1038/nmeth.1784

    Article  CAS  Google Scholar 

  113. Kameda H, Furuta T, Matsuda W et al (2008) Targeting green fluorescent protein to dendritic membrane in central neurons. Neurosci Res 61:79–91. doi:10.1016/j.neures.2008.01.014

    Article  CAS  PubMed  Google Scholar 

  114. Gasparini S (2011) Distance- and activity-dependent modulation of spike back-propagation in layer V pyramidal neurons of the medial entorhinal cortex. J Neurophysiol 105:1372–1379. doi:10.1152/jn.00014.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nevian T, Helmchen F (2007) Calcium indicator loading of neurons using single-cell electroporation. Pflügers Arch 454:675–688. doi:10.1007/s00424-007-0234-2

    Article  CAS  PubMed  Google Scholar 

  116. Silver RA, Whitaker M, Bolsover SR (1992) Intracellular ion imaging using fluorescent dyes: artefacts and limits to resolution. Pflügers Arch 420:595–602

    Article  CAS  PubMed  Google Scholar 

  117. Palmer LM, Schulz JM, Murphy SC et al (2012) The cellular basis of GABA(B)-mediated interhemispheric inhibition. Science 335:989–993. doi:10.1126/science.1217276

    Article  CAS  PubMed  Google Scholar 

  118. Reits EA, Neefjes JJ (2001) From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol 3:E145–E147. doi:10.1038/35078615

    Article  CAS  PubMed  Google Scholar 

  119. Majewska A, Tashiro A, Yuste R (2000) Regulation of spine calcium dynamics by rapid spine motility. J Neurosci 20:8262–8268

    CAS  PubMed  Google Scholar 

  120. Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272:716–719

    Article  CAS  PubMed  Google Scholar 

  121. Antic SD (2003) Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J Physiol 550:35–50. doi:10.1113/jphysiol.2002.033746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Djurisic M, Popovic M, Carnevale N, Zecevic D (2008) Functional structure of the mitral cell dendritic tuft in the rat olfactory bulb. J Neurosci 28:4057–4068. doi:10.1523/JNEUROSCI.5296-07.2008

    Article  CAS  PubMed  Google Scholar 

  123. Milojkovic BA, Zhou W-L, Antic SD (2007) Voltage and calcium transients in basal dendrites of the rat prefrontal cortex. J Physiol 585:447–468. doi:10.1113/jphysiol.2007.142315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Palmer LM, Stuart GJ (2009) Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci 29:6897–6903. doi:10.1523/JNEUROSCI.5847-08.2009

    Article  CAS  PubMed  Google Scholar 

  125. Ross WN, Werman R (1987) Mapping calcium transients in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro. J Physiol 389:319–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fine A, Amos WB, Durbin RM, McNaughton PA (1988) Confocal microscopy: applications in neurobiology. Trends Neurosci 11:346–351

    Article  CAS  PubMed  Google Scholar 

  127. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  128. Göppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 401:273–294. doi:10.1002/andp.19314010303

    Article  Google Scholar 

  129. Gentet LJ, Kremer Y, Taniguchi H et al (2012) Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat Neurosci 15:607–612. doi:10.1038/nn.3051

    Article  CAS  PubMed  Google Scholar 

  130. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940. doi:10.1038/nmeth818

    Article  CAS  PubMed  Google Scholar 

  131. Wilt BA, Burns LD, Wei Ho ET et al (2009) Advances in light microscopy for neuroscience. Annu Rev Neurosci 32:435–506. doi:10.1146/annurev.neuro.051508.135540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sosinsky GE, Giepmans BNG, Deerinck TJ et al (2007) Markers for correlated light and electron microscopy. Methods Cell Biol 79:575–591. doi:10.1016/S0091-679X(06)79023-9

    Article  CAS  PubMed  Google Scholar 

  133. Palay SL, Palade GE (1955) The fine structure of neurons. J Biophys Biochem Cytol 1:69–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Palay SL (1956) Synapses in the central nervous system. J Biophys Biochem Cytol 2:193–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. De Robertis ED, Bennett HS (1955) Some features of the submicroscopic morphology of synapses in frog and earthworm. J Biophys Biochem Cytol 1:47–58

    Article  PubMed Central  Google Scholar 

  136. Harris KM, Weinberg RJ (2012) Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol. 4(5). pii: a005587. doi: 10.1101/cshperspect.a005587

    Google Scholar 

  137. Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329. doi:10.1371/journal.pbio.0020329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  CAS  PubMed  Google Scholar 

  139. Tønnesen J, Nägerl UV (2013) Superresolution imaging for neuroscience. Exp Neurol 242:33–40. doi:10.1016/j.expneurol.2012.10.004

    Article  PubMed  Google Scholar 

  140. Ding JB, Takasaki KT, Sabatini BL (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63:429–437. doi:10.1016/j.neuron.2009.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nägerl UV, Willig KI, Hein B et al (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S A 105:18982–18987. doi:10.1073/pnas.0810028105

    Article  PubMed  PubMed Central  Google Scholar 

  142. Takasaki KT, Ding JB, Sabatini BL (2013) Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J 104:770–777. doi:10.1016/j.bpj.2012.12.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tønnesen J, Katona G, Rózsa B, Nägerl UV (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685. doi:10.1038/nn.3682

    Article  PubMed  CAS  Google Scholar 

  144. Stuart G, Spruston N, Hausser M (2007) Dendrites, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  145. Silver R, Farrant M (2007) Neurotransmitter-gated channels in dendrites. In: Stuart GJ, Spruston N, Hausser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 190–223

    Google Scholar 

  146. Carter A, Sabatini B (2007) Spine calcium signaling. In: Stuart GJ, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 287–308

    Chapter  Google Scholar 

  147. Helmchen F (2007) Biochemical compartmentalization in dendrites. In: Stuart GJ, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 251–285

    Chapter  Google Scholar 

  148. Frick A, Magee J, Johnston D (2004) LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci 7:126–135. doi:10.1038/nn1178

    Article  CAS  PubMed  Google Scholar 

  149. Mainen ZF, Abbott LF (2007) Functional plasticity at dendritic synapses. In: Stuart GJ, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 465–498

    Chapter  Google Scholar 

  150. Makara JK, Losonczy A, Wen Q, Magee JC (2009) Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons. Nat Neurosci 12:1485–1487. doi:10.1038/nn.2428

    Article  CAS  PubMed  Google Scholar 

  151. Bernard C, Shah M, Johnston D (2007) Dendrites and disease. In: Stuart GJ, Spruston N, Hausser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford, pp 531–550

    Chapter  Google Scholar 

  152. Palmer LM (2014) Dendritic integration in pyramidal neurons during network activity and disease. Brain Res Bull 103:2–10. doi:10.1016/j.brainresbull.2013.09.010

    Article  CAS  PubMed  Google Scholar 

  153. Deisseroth K, Schnitzer MJ (2013) Engineering approaches to illuminating brain structure and dynamics. Neuron 80:568–577. doi:10.1016/j.neuron.2013.10.032

    Article  CAS  PubMed  Google Scholar 

  154. Oheim M, van’t Hoff M, Feltz A et al (2014) New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging. Biochim Biophys Acta 1843:2284–2306. doi:10.1016/j.bbamcr.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  155. Cao G, Platisa J, Pieribone VA et al (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154:904–913. doi:10.1016/j.cell.2013.07.027

    Article  CAS  PubMed  Google Scholar 

  156. Garaschuk O, Griesbeck O, Konnerth A (2007) Troponin C-based biosensors: a new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. Cell Calcium 42:351–361. doi:10.1016/j.ceca.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  157. Kitamura K, Häusser M (2011) Dendritic calcium signaling triggered by spontaneous and sensory-evoked climbing fiber input to cerebellar Purkinje cells in vivo. J Neurosci 31:10847–10858. doi:10.1523/JNEUROSCI.2525-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Murayama M, Larkum ME (2009) Enhanced dendritic activity in awake rats. Proc Natl Acad Sci U S A 106:20482–20486. doi:10.1073/pnas.0910379106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Major G, Polsky A, Denk W et al (2008) Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. J Neurophysiol 99:2584–2601. doi:10.1152/jn.00011.2008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant NS069714 (to SG) and NHMRC grants 1063533 and 1085708 (to LMP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Gasparini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gasparini, S., Palmer, L.M. (2016). Dendrites: Recording from Fine Neuronal Structures Using Patch-Clamp and Imaging Techniques. In: Korngreen, A. (eds) Advanced Patch-Clamp Analysis for Neuroscientists. Neuromethods, vol 113. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3411-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3411-9_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3409-6

  • Online ISBN: 978-1-4939-3411-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics