Skip to main content

The Application of DamID to Identify Peripheral Gene Sequences in Differentiated and Primary Cells

  • Protocol
  • First Online:
The Nuclear Envelope

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1411))

Abstract

The nuclear envelope interacts extensively with chromatin, though with differences in degree and specificity in different cell types. However, identifying the specific genome sequences associated with individual nuclear envelope associated proteins, particularly nuclear membrane proteins and lamins, has been particularly difficult due to their inherent insolubility and interconnectivity. DamID is a powerful tool developed to bypass many of the inherent difficulties with identifying nuclear envelope protein–chromatin interactions and, as more tissue culture cell types derived from different tissues are examined by DamID, it is increasingly apparent that there are distinct patterns of genome organization in differentiated cell types. However, in applying DamID to both more diverse and/or differentiated cell types a number of technical caveats to the method have been observed which must be circumvented to ensure high quality data is generated. Here we elaborate a detailed methodology to adapt DamID to novel cell types, in particular differentiated cells in culture. Moreover, we highlight heretofore largely ignored variations in the PCR amplified DNA products generated by the DamID procedure and the consequences they have for downstream analysis steps. Thus, the methods described here should serve as a useful resource to researchers new to DamID as well as readily allow its application to an expanded set of cell types and conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

gDNA:

Genomic DNA

NE:

Nuclear envelope

NET :

Nuclear envelope transmembrane protein

PCR :

Polymerase chain reaction

References

  1. Zuleger N, Robson MI, Schirmer EC (2011) The nuclear envelope as a chromatin organizer. Nucleus 2:339–349

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wong X, Luperchio TR, Reddy KL (2014) NET gains and losses: the role of changing nuclear envelope proteomes in genome regulation. Curr Opin Cell Biol 28:105–120

    Article  CAS  PubMed  Google Scholar 

  3. Lund E, Oldenburg AR, Delbarre E, Freberg CT, Duband-Goulet I, Eskeland R, Buendia B, Collas P (2013) Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Res 23:1580–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dechat T, Adam SA, Goldman RD (2009) Nuclear lamins and chromatin: when structure meets function. Adv Enzyme Regul 49:157–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14:13–24

    Article  CAS  PubMed  Google Scholar 

  6. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951

    Article  CAS  PubMed  Google Scholar 

  7. Vogel MJ, Peric-Hupkes D, van Steensel B (2007) Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat Protoc 2:1467–1478

    Article  CAS  PubMed  Google Scholar 

  8. Tunnah D, Sewry CA, Vaux D, Schirmer EC, Morris GE (2005) The apparent absence of lamin B1 and emerin in many tissue nuclei is due to epitope masking. J Mol Histol 36:337–344

    Article  CAS  PubMed  Google Scholar 

  9. van Steensel B, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18:424–428

    Article  PubMed  Google Scholar 

  10. Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38:1005–1014

    Article  CAS  PubMed  Google Scholar 

  11. Peter A, Stick R (2012) Evolution of the lamin protein family: what introns can tell. Nucleus 3:44–59

    Article  PubMed  Google Scholar 

  12. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2013) Corrigendum: Global quantification of mammalian gene expression control. Nature 495:126–127

    Article  PubMed  Google Scholar 

  13. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  PubMed  Google Scholar 

  14. Wu F, Yao J (2013) Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping. BMC Genomics 14:591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Graf S, Flicek P, Kerkhoven RM, van Lohuizen M, Reinders M, Wessels L, van Steensel B (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38:603–613

    Article  CAS  PubMed  Google Scholar 

  16. Steglich B, Filion GJ, van Steensel B, Ekwall K (2012) The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus 3:77–87

    Article  PubMed  Google Scholar 

  17. Gonzalez-Aguilera C, Ikegami K, Ayuso C, de Luis A, Iniguez M, Cabello J, Lieb JD, Askjaer P (2014) Genome-wide analysis links emerin to neuromuscular junction activity in Caenorhabditis elegans. Genome Biol 15:R21

    Article  PubMed  PubMed Central  Google Scholar 

  18. Germann S, Juul-Jensen T, Letarnec B, Gaudin V (2006) DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci. Plant J 48:153–163

    Article  CAS  PubMed  Google Scholar 

  19. Lund E, Oldenburg AR, Collas P (2014) Enriched domain detector: a program for detection of wide genomic enrichment domains robust against local variations. Nucleic Acids Res 42, e92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lluch-Senar M, Luong K, Llorens-Rico V, Delgado J, Fang G, Spittle K, Clark TA, Schadt E, Turner SW, Korlach J, Serrano L (2013) Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at single-base resolution. Plos Genet 9, e1003191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419

    Article  PubMed  Google Scholar 

  23. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW 3rd, Su AI (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10:R130

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cornetta K, Anderson WF (1989) Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene-transfer - implications for human-gene therapy. J Virol Methods 23:187–194

    Article  CAS  PubMed  Google Scholar 

  25. Korfali N, Fairley EAL, Swanson SK, Florens L, Schirmer EC (2009) Use of sequential chemical extractions to purify nuclear membrane proteins for proteomics identification. Methods Mol Biol 528:201–225

    Article  CAS  PubMed  Google Scholar 

  26. Strauss WM (2001) Preparation of genomic DNA from mammalian tissue. Curr Protoc Immunol Chapter 10, Unit 10 12

    Google Scholar 

  27. Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, van Steensel B (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153:178–192

    Article  CAS  PubMed  Google Scholar 

  28. Banaszynski LA, Chen LC, Maynard-Smith LA, Ooi AGL, Wandless TJ (2006) A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126:995–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jose de las Heras who contributed significantly to the establishment and analysis of DamID in the Schirmer lab, and Bas van Steensel, Carolyn de Graaf, and Job Kind who provided considerable guidance on the method. MIR was supported by a Wellcome Trust Ph.D. Studentship (093854). Funding for this work was provided by Welcome Trust grants 095209 to ECS and 092076 for the Centre for Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Schirmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Robson, M.I., Schirmer, E.C. (2016). The Application of DamID to Identify Peripheral Gene Sequences in Differentiated and Primary Cells. In: Shackleton, S., Collas, P., Schirmer, E. (eds) The Nuclear Envelope. Methods in Molecular Biology, vol 1411. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3530-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3530-7_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3528-4

  • Online ISBN: 978-1-4939-3530-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics