Skip to main content

A Round Trip from Medicinal Chemistry to Predictive Toxicology

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1425))

  • 2013 Accesses

Abstract

Predictive toxicology is a new emerging multifaceted research field aimed at protecting human health and environment from risks posed by chemicals. Such issue is of extreme public relevance and requires a multidisciplinary approach where the experience in medicinal chemistry is of utmost importance. Herein, we will survey some basic recommendations to gather good data and then will review three recent case studies to show how strategies of ligand- and structure-based molecular design, widely applied in medicinal chemistry, can be adapted to meet the more restrictive scientific and regulatory goals of predictive toxicology. In particular, we will report:

  • Docking-based classification models to predict the estrogenic potentials of chemicals.

  • Predicting the bioconcentration factor using biokinetics descriptors.

  • Modeling oral sub-chronic toxicity using a customized k-nearest neighbors (k-NN) approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell WMS, Burch RL (1959) The principles of humane experimental technique. Johns Hopkins Bloom Sch Public Health, Baltimore

    Google Scholar 

  2. Hornberg JJ, Laursen M, Brenden N et al (2014) Exploratory toxicology as an integrated part of drug discovery. Part I: why and how. Drug Discov Today 19:1131–1136

    Article  CAS  PubMed  Google Scholar 

  3. Nicolotti O, Benfenati E, Carotti A et al (2014) REACH and in silico methods: an attractive opportunity for medicinal chemists. Drug Discov Today 19:1757–1768

    Article  CAS  PubMed  Google Scholar 

  4. Young D, Martin T, Venkatapathy R et al (2008) Are the chemical structures in your QSAR correct? QSAR Comb Sci 27:1337–1345

    Article  CAS  Google Scholar 

  5. Zhu H, Tropsha A, Fourches D et al (2008) Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. J Chem Inf Model 48:766–784

    Article  CAS  PubMed  Google Scholar 

  6. Tetko IV, Sushko I, Pandey AK et al (2008) Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. J Chem Inf Model 48:1733–1746

    Article  CAS  PubMed  Google Scholar 

  7. Fourches D, Muratov E, Tropsha A (2010) Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50:1189–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maggiora GM (2006) On outliers and activity cliffs—why QSAR often disappoints. J Chem Inf Model 46:1535

    Article  CAS  PubMed  Google Scholar 

  9. Cruz-Monteagudo M, Medina-Franco JL, Pérez-Castillo Y et al (2014) Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde? Drug Discov Today 19:1069–1080

    Article  CAS  PubMed  Google Scholar 

  10. Nicolotti O, Carotti A (2006) QSAR and QSPR studies of a highly structured physicochemical domain. J Chem Inf Model 46:264–276

    Article  CAS  PubMed  Google Scholar 

  11. Todeschini R, Consonni V (eds) (2000) Handbook of molecular descriptors. Wiley, Weinheim

    Google Scholar 

  12. Nicolotti O, Gillet VJ, Fleming PJ et al (2002) Multiobjective optimization in quantitative structure-activity relationships: deriving accurate and interpretable QSARs. J Med Chem 45:5069–5080

    Article  CAS  PubMed  Google Scholar 

  13. Bickerton GR, Paolini GV, Besnard J et al (2012) Quantifying the chemical beauty of drugs. Nat Chem 4:90–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bouvier d’Yvoire M, Prieto P, Blaauboer BJ et al (2007) Physiologically-based Kinetic Modelling (PBK Modelling): meeting the 3Rs agenda. The report and recommendations of ECVAM Workshop 63. Altern Lab Anim ATLA 35:661–671

    PubMed  Google Scholar 

  15. Van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192–204

    Article  PubMed  Google Scholar 

  16. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC et al (2009) Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev 30:293–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi LM, Fang H, Tong W et al (2001) QSAR models using a large diverse set of estrogens. J Chem Inf Comput Sci 41:186–195

    Article  CAS  PubMed  Google Scholar 

  18. Devillers J, Marchand-Geneste N, Carpy A et al (2006) SAR and QSAR modeling of endocrine disruptors. SAR QSAR Environ Res 17:393–412

    Article  CAS  PubMed  Google Scholar 

  19. Jacobs MN (2004) In silico tools to aid risk assessment of endocrine disrupting chemicals. Toxicology 205:43–53

    Article  CAS  PubMed  Google Scholar 

  20. Trisciuzzi D, Alberga D, Mansouri K et al (2015) Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data. Future Med Chem 7:1921–1936. doi:10.4155/FMC.15.103

    Article  CAS  PubMed  Google Scholar 

  21. Small-molecule drug discovery suite 2014-4: glide, version 6.5 (2014) Schrödinger, LLC, New York

    Google Scholar 

  22. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  23. Arnot JA, Gobas FA (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14:257–297

    Article  CAS  Google Scholar 

  24. OECD (2012) Test no. 305: bioaccumulation in fish: aqueous and dietary exposure, OECD guidelines for the testing of chemicals, section 3. OECD Publishing, 12.10.12, 72. (http://dx.doi.org/10.1787/9789264185296-en). /http://dx.doi.org/10.1787/9789264185296-enS. Consulted July 2015

  25. Gissi A, Gadaleta D, Floris M et al (2014) An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes. ALTEX 31:23–36

    Article  PubMed  Google Scholar 

  26. Consonni V, Ballabio D, Todeschini R (2009) Comments on the Definition of the Q2 Parameter for QSAR Validation. J Chem Inf Model 49:1669–1678

    Article  CAS  PubMed  Google Scholar 

  27. Schrödinger Release 2011-1: QikProp, version 3.4 (2011) Schrödinger, LLC, New York

    Google Scholar 

  28. Schrödinger Release 2011-1 (2011) Schrödinger, LLC, New York

    Google Scholar 

  29. Jaworska J, Nikolova-Jeliazkova N, Aldenberg T (2005) QSAR applicability domain estimation by projection of the training set descriptor space: a review. Altern Lab Anim ATLA 33:445–459

    CAS  PubMed  Google Scholar 

  30. Aptula AO, Roberts DW (2006) Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity. Chem Res Toxicol 19:1097–1105

    Article  CAS  PubMed  Google Scholar 

  31. Roberts DW, Aptula AO, Patlewicz G (2006) Mechanistic applicability domains for non-animal based prediction of toxicological endpoints. QSAR analysis of the Schiff base applicability domain for skin sensitization. Chem Res Toxicol 19:1228–1233

    Article  CAS  PubMed  Google Scholar 

  32. Schultz TW, Hewitt M, Netzeva TI et al (2007) Assessing applicability domains of toxicological QSARs: definition, confidence in predicted values, and the role of mechanisms of action. QSAR Comb Sci 26:238–254

    Article  CAS  Google Scholar 

  33. Gramatica P (2010) Chemometric methods and theoretical molecular descriptors in predictive QSAR modeling of the environmental behavior of organic pollutants. In: Puzyn T, Leszczynski J, Cronin MT (eds) Recent advances in QSAR studies. Springer, Netherlands, pp 327–366

    Chapter  Google Scholar 

  34. Sand S, Victorin K, Filipsson AF (2008) The current state of knowledge on the use of the benchmark dose concept in risk assessment. J Appl Toxicol 28:405–421

    Article  CAS  PubMed  Google Scholar 

  35. Sakuratani Y, Zhang HQ, Nishikawa S et al (2013) Hazard Evaluation Support System (HESS) for predicting repeated dose toxicity using toxicological categories. SAR QSAR Environ Res 24:351–363

    Article  CAS  PubMed  Google Scholar 

  36. SCCS—Scientific Committee on Consumer Safety (2012). The SCCS’s notes of guidance for the testing of cosmetics substances and their safety evaluation 8th revision. (http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/ sccs_s_006.pdf). Consulted April 2014

  37. Gadaleta D, Pizzo F, Lombardo A et al (2014) A k-NN algorithm for predicting the oral sub-chronic toxicity in the rat. ALTEX 31:423–432

    Article  PubMed  Google Scholar 

  38. Cramer RD (2012) The inevitable QSAR renaissance. J Comput Aided Mol Des 26:35–38

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orazio Nicolotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mangiatordi, G.F., Carotti, A., Novellino, E., Nicolotti, O. (2016). A Round Trip from Medicinal Chemistry to Predictive Toxicology. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 1425. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3609-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3609-0_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3607-6

  • Online ISBN: 978-1-4939-3609-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics