Skip to main content

Optical Coherence Tomography to Measure Sound-Induced Motions Within the Mouse Organ of Corti In Vivo

  • Protocol
  • First Online:
Auditory and Vestibular Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1427))

Abstract

The measurement of mechanical vibrations within the living cochlea is critical to understanding the first nonlinear steps in auditory processing, hair cell stimulation, and cochlear amplification. However, it has proven to be a challenging endeavor. This chapter describes how optical coherence tomography (OCT) can be used to measure vibrations within the tissues of the organ of Corti. These experimental measurements can be performed within the unopened cochlea of living mice routinely and reliably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Von Bekesy G (1960) Experiments in hearing. McGraw-Hill, New York

    Google Scholar 

  2. Johnstone BM, Boyle AJ (1967) Basilar membrane vibration examined with the Mossbauer technique. Science 158:389–390

    Article  CAS  PubMed  Google Scholar 

  3. Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. J Acoust Soc Am 49(Suppl 2):1218+

    Article  PubMed  Google Scholar 

  4. Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90

    Article  CAS  PubMed  Google Scholar 

  5. Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ren T (2002) Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proc Natl Acad Sci U S A 99:17101–17106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Legan PK, Lukashkina VA, Goodyear RJ, Kossi M, Russell IJ et al (2000) A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28:273–285

    Article  CAS  PubMed  Google Scholar 

  8. Cooper NP, Rhode WS (1995) Nonlinear mechanics at the apex of the guinea-pig cochlea. Hear Res 82:225–243

    Article  CAS  PubMed  Google Scholar 

  9. Cooper NP, Rhode WS (1997) Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea. J Neurophysiol 78:261–270

    CAS  PubMed  Google Scholar 

  10. Khanna SM (2002) Non-linear response to amplitude-modulated waves in the apical turn of the guinea pig cochlea. Hear Res 174:107–123

    Article  CAS  PubMed  Google Scholar 

  11. Gao SS, Raphael PD, Wang R, Park J, Xia A et al (2013) In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography. Biomed Opt Express 4:230–240

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gao SS, Wang R, Raphael PD, Moayedi Y, Groves AK et al (2014) Vibration of the organ of Corti within the cochlear apex in mice. J Neurophysiol 112:1192–1204

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gao SS, Xia A, Yuan T, Raphael PD, Shelton RL et al (2011) Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography. Opt Express 19:15415–15428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen CT, Jung W, Kim J, Chaney EJ, Novak M et al (2012) Noninvasive in vivo optical detection of biofilm in the human middle ear. Proc Natl Acad Sci U S A 109:9529–9534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Subhash HM, Davila V, Sun H, Nguyen-Huynh AT, Nuttall AL et al (2010) Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography. J Biomed Opt 15:36024

    Article  Google Scholar 

  16. Choudhury N, Song G, Chen F, Matthews S, Tschinkel T et al (2006) Low coherence interferometry of the cochlear partition. Hear Res 220:1–9

    Article  PubMed  Google Scholar 

  17. Chen F, Zha D, Fridberger A, Zheng J, Choudhury N et al (2011) A differentially amplified motion in the ear for near-threshold sound detection. Nat Neurosci 14:770–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee HY, Raphael PD, Park J, Ellerbee AK, Applegate BE et al (2015) Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Proc Natl Acad Sci U S A 112:3128–3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ et al (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069

    Article  PubMed  Google Scholar 

  20. Choma M, Sarunic M, Yang C, Izatt J (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11:2183

    Article  PubMed  Google Scholar 

  21. Leitgeb R, Hitzenberger CK, Fercher AF (2003) Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 11:889–894

    Article  CAS  PubMed  Google Scholar 

  22. Applegate BE, Shelton RL, Gao SS, Oghalai JS (2011) Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography. Opt Lett 36:4716–4718

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wenzel GI, Xia A, Funk E et al (2007) Helper-dependent adenovirus-mediated gene transfer into the adult mouse cochlea. Otol Neurotol 28:1100–1108

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the assistance of Jinkyung Kim, Hee Yoon Lee, Xiao Fang Liu, Patrick Raphael, and Anping Xia. This project was funded by NIH grants DC014450, DC013774, DC010363, and the Stanford CNC Seed Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Oghalai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jawadi, Z., Applegate, B.E., Oghalai, J.S. (2016). Optical Coherence Tomography to Measure Sound-Induced Motions Within the Mouse Organ of Corti In Vivo. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology, vol 1427. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3615-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3615-1_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3613-7

  • Online ISBN: 978-1-4939-3615-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics