Skip to main content

Detection of Connexins in Liver Cells Using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis and Immunoblot Analysis

  • Protocol
  • First Online:
Gap Junction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1437))

Abstract

Since connexin expression is partly regulated at the protein level, immunoblot analysis represents a frequently addressed technique in the connexin research field. The present chapter describes the setup of an immunoblot procedure, including protein extraction and quantification from biological samples, gel electrophoresis, protein transfer, and immunoblotting, which is optimized for analysis of connexins in liver tissue. In essence, proteins are separated on a polyacrylamide gel using sodium dodecyl sulfate followed by transfer of proteins on a nitrocellulose membrane. The latter allows specific detection of connexins with antibodies combined with revelation through enhanced chemiluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renart J, Reiser J, Stark GR (1979) Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proc Natl Acad Sci U S A 76:3116–3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  CAS  PubMed  Google Scholar 

  4. Dubitsky A, DeCollibus D, Ortolano GA (2002) Sensitive fluorescent detection of protein on nylon membranes. J Biochem Biophys Methods 51:47–56

    Article  CAS  PubMed  Google Scholar 

  5. McDonough AA, Veiras LC, Minas JN et al (2015) Considerations when quantitating protein abundance by immunoblot. Am J Physiol Cell Physiol 308:C426–C433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beardslee MA, Laing JG, Beyer EC et al (1998) Rapid turnover of connexin43 in the adult rat heart. Circ Res 83:629–635

    Article  CAS  PubMed  Google Scholar 

  7. Musil LS, Le AC, VanSlyke JK et al (2000) Regulation of connexin degradation as a mechanism to increase gap junction assembly and function. J Biol Chem 275:25207–25215

    Article  CAS  PubMed  Google Scholar 

  8. Darrow BJ, Laing JG, Lampe PD et al (1995) Expression of multiple connexins in cultured neonatal rat ventricular myocytes. Circ Res 76:381–387

    Article  CAS  PubMed  Google Scholar 

  9. Fallon RF, Goodenough DA (1981) Five-hour half-life of mouse liver gap-junction protein. J Cell Biol 90:521–526

    Article  CAS  PubMed  Google Scholar 

  10. Laird DW, Puranam KL, Revel JP (1991) Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J 273:67–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Su V, Lau AF (2014) Connexins: mechanisms regulating protein levels and intercellular communication. FEBS Lett 588:1212–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salat-Canela C, Muñoz M, Sesé M et al (2015) Post-transcriptional regulation of connexins. Biochem Soc Trans 43:465–470

    Article  CAS  PubMed  Google Scholar 

  13. Maes M, Decrock E, Cogliati B et al (2014) Connexin and pannexin (hemi)channels in the liver. Front Physiol 4:405

    Article  PubMed  PubMed Central  Google Scholar 

  14. Alexander DB, Goldberg GS (2003) Transfer of biologically important molecules between cells through gap junction channels. Curr Med Chem 10:2045–2058

    Article  CAS  PubMed  Google Scholar 

  15. Decrock E, Vinken M, de Vuyst E et al (2009) Connexin-related signaling in cell death: to live or let die? Cell Death Differ 16:524–536

    Article  CAS  PubMed  Google Scholar 

  16. Vinken M, Decrock E, De Vuyst E et al (2011) Connexins: sensors and regulators of cell cycling. Biochim Biophys Acta 1815:13–25

    CAS  PubMed  Google Scholar 

  17. Chanson M, Derouette JP, Roth I et al (2005) Gap junctional communication in tissue inflammation and repair. Biochim Biophys Acta 1711:197–207

    Article  CAS  PubMed  Google Scholar 

  18. Maes M, Cogliati B, Crespo YS et al (2015) Roles of connexins and pannexins in digestive homeostasis. Cell Mol Life Sci 72:2809–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. King TJ, Bertram JS (2005) Connexins as targets for cancer chemoprevention and chemotherapy. Biochim Biophys Acta 1719:146–160

    Article  CAS  PubMed  Google Scholar 

  20. Kar R, Batra N, Riquelme MA et al (2012) Biological role of connexin intercellular channels and hemichannels. Arch Biochem Biophys 524:2–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jensen EC (2012) The basics of western blotting. Anat Rec 295:369–371

    Article  Google Scholar 

  22. Kurien BT, Scofield RH (2006) Western blotting. Methods 38:283–293

    Article  CAS  PubMed  Google Scholar 

  23. Galva C, Gatto C, Milanick M (2012) Soymilk: an effective and inexpensive blocking agent for immunoblotting. Anal Biochem 426:22–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mruk DD, Cheng CY (2011) Enhanced chemiluminescence (ECL) for routine immunoblotting: an inexpensive alternative to commercially available kits. Spermatogenesis 1:121–122

    Article  PubMed  PubMed Central  Google Scholar 

  25. Helenius A, McCaslin DR, Fries E et al (1979) Properties of detergents. Methods Enzymol 56:734–749

    Article  CAS  PubMed  Google Scholar 

  26. MacPhee DJ (2010) Methodological considerations for improving Western blot analysis. J Pharmacol Toxicol Methods 61:171–177

    Article  CAS  PubMed  Google Scholar 

  27. Olson BJ, Markwell J (2007) Assays for determination of protein concentration. Curr Protoc Protein Sci 48, Chapter 3:Unit 3.4

    Google Scholar 

  28. Noble JE, Bailey MJ (2009) Quantitation of protein. Methods Enzymol 463:73–95

    Article  CAS  PubMed  Google Scholar 

  29. Lovrien R, Matulis D (2005) Assays for total protein. Curr Protoc Microbiol Appendix 3:Appendix 3A

    Google Scholar 

  30. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  31. Pennisi M, Malaguarnera G, Puglisi V et al (2013) Neurotoxicity of acrylamide in exposed workers. Int J Environ Res Public Health 10:3843–3854

    Article  PubMed  PubMed Central  Google Scholar 

  32. Erdreich LS, Friedman MA (2004) Epidemiologic evidence for assessing the carcinogenicity of acrylamide. Regul Toxicol Pharmacol 39:150–157

    Article  CAS  PubMed  Google Scholar 

  33. Pruser KN, Flynn NE (2011) Acrylamide in health and disease. Front Biosci 3:41–51

    Google Scholar 

  34. Lipman NS, Jackson LR, Trudel LJ et al (2005) Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J 46:258–268

    Article  CAS  PubMed  Google Scholar 

  35. Silva JM, McMahon M (2014) The fastest Western in town: a contemporary twist on the classic Western blot analysis. J Vis Exp 84:e51149

    PubMed  Google Scholar 

  36. Gilda JE, Gomes AV (2013) Stain-Free total protein staining is a superior loading control to β-actin for Western blots. Anal Biochem 440:186–188

    Article  CAS  PubMed  Google Scholar 

  37. Alegria-Schaffer A (2014) Western blotting using chemiluminescent substrates. Methods Enzymol 541:251–259

    Article  CAS  PubMed  Google Scholar 

  38. Morseman JP, Moss MW, Zoha SJ et al (1999) PBXL-1: a new fluorochrome applied to detection of proteins on membranes. Biotechniques 26:559–563

    CAS  PubMed  Google Scholar 

  39. Alegria-Schaffer A, Lodge A, Vattem K (2009) Performing and optimizing Western blots with an emphasis on chemiluminescent detection. Methods Enzymol 46:573–599

    Article  Google Scholar 

  40. Wu M, Stockley PG, Martin WJ (2002) An improved western blotting technique effectively reduces background. Electrophoresis 23:2373–2376

    Article  CAS  PubMed  Google Scholar 

  41. Farmer SR, Wan KM, Ben-Ze’ev A et al (1983) Regulation of actin mRNA levels and translation responds to changes in cell configuration. Mol Cell Biol 3:182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang JY, Zhang F, Hong CQ et al (2015) Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med 12:10–22

    PubMed  PubMed Central  Google Scholar 

  43. Bakhashab S, Lary S, Ahmed F et al (2014) Reference genes for expression studies in hypoxia and hyperglycemia models in human umbilical vein endothelial cells. G3 4:2159–2165

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sangrajrang S, Denoulet P, Laing NM et al (1998) Association of estramustine resistance in human prostatic carcinoma cells with modified patterns of tubulin expression. Biochem Pharmacol 55:325–331

    Article  CAS  PubMed  Google Scholar 

  45. Prasad V, Kumar SS, Dey CS (2000) Resistance to arsenite modulates levels of alpha-tubulin and sensitivity to paclitaxel in Leishmania donovani. Parasitol Res 86:838–842

    Article  CAS  PubMed  Google Scholar 

  46. Maes M, McGill MR, da Silva TC et al (2016) Involvement of connexin43 in acetaminophen-induced liver injury. Biochim Biophys Acta in press

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the University Hospital of the Vrije Universiteit Brussel-Belgium (Willy Gepts Fonds UZ-VUB), the Fund for Scientific Research-Flanders (FWO grants G009514N and G010214N), the European Research Council (ERC Starting Grant 335476), the University of São Paulo-Brazil, and the Foundation for Research Support of the State of São Paulo (FAPESP SPEC grant 2013/50420-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost Willebrords .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Willebrords, J., Maes, M., Yanguas, S.C., Cogliati, B., Vinken, M. (2016). Detection of Connexins in Liver Cells Using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis and Immunoblot Analysis. In: Vinken, M., Johnstone, S. (eds) Gap Junction Protocols. Methods in Molecular Biology, vol 1437. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3664-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3664-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3662-5

  • Online ISBN: 978-1-4939-3664-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics