Skip to main content

A Brief Review of West Nile Virus Biology

  • Protocol
  • First Online:
West Nile Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1435))

Abstract

West Nile virus (WNV) is an arbovirus with increased global incidence in the last decade. It is also a major cause of human encephalitis in the USA. WNV is an arthropod-transmitted virus that mainly affects birds but humans become infected as incidental dead-end hosts which can cause outbreaks in naïve populations. The main vectors of WNV are mosquitoes of the genus Culex, which preferentially feed on birds. As in many other arboviruses, the characteristics that allow Flaviviruses like WNV to replicate and transmit to different hosts are encrypted in their genome, which also contains information for the production of structural and nonstructural proteins needed for host cell infection. WNV and other Flaviviruses have developed different strategies to establish infection, replication, and successful transmission. Most of these strategies include the diversion of the host’s immune responses away from the virus. In this review, we describe the molecular structure and protein function of WNV with emphasis on protein involvement in the modulation of antiviral immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray KO, Mertens E, Despres P (2010) West Nile virus and its emergence in the United States of America. Vet Res 41(6):67, Pubmed Central PMCID: 2913730

    Article  PubMed  PubMed Central  Google Scholar 

  2. Day JF, Tabachnick WJ, Smartt CT (2015) Factors that influence the transmission of West Nile virus in Florida. J Med Entomol 52(5):743–754

    Article  PubMed  Google Scholar 

  3. Paradkar PN, Duchemin JB, Rodriguez-Andres J, Trinidad L, Walker PJ (2015) Cullin4 is pro-viral during West Nile virus infection of Culex mosquitoes. PLoS Pathog 11(9), e1005143

    Article  PubMed  PubMed Central  Google Scholar 

  4. Selisko B, Wang C, Harris E, Canard B (2014) Regulation of flavivirus RNA synthesis and replication. Curr Opin Virol 9:74–83, Pubmed Central PMCID: 4295515

    Article  CAS  PubMed  Google Scholar 

  5. Bidet K, Garcia-Blanco MA (2014) Flaviviral RNAs: weapons and targets in the war between virus and host. Biochem J 462(2):215–230

    Article  CAS  PubMed  Google Scholar 

  6. Smit JM, Moesker B, Rodenhuis-Zybert I, Wilschut J (2011) Flavivirus cell entry and membrane fusion. Viruses 3(2):160–171, Pubmed Central PMCID: 3206597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stiasny K, Fritz R, Pangerl K, Heinz FX (2011) Molecular mechanisms of flavivirus membrane fusion. Amino Acids 41(5):1159–1163

    Article  CAS  PubMed  Google Scholar 

  8. Klema VJ, Padmanabhan R, Choi KH (2015) Flaviviral replication complex: coordination between RNA synthesis and 51-RNA capping. Viruses 7(8):4640–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma L, Jones CT, Groesch TD, Kuhn RJ, Post CB (2004) Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci U S A 101(10):3414–3419, Pubmed Central PMCID: 373476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S et al (2003) Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10(11):907–912, Pubmed Central PMCID: 4148076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chambers TJ, Hahn CS, Galler R, Rice CM (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688

    Article  CAS  PubMed  Google Scholar 

  12. Ray D, Shah A, Tilgner M, Guo Y, Zhao Y, Dong H et al (2006) West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol 80(17):8362–8370, Pubmed Central PMCID: 1563844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wengler G, Wengler G (1981) Terminal sequences of the genome and replicative-from RNA of the flavivirus West Nile virus: absence of poly(A) and possible role in RNA replication. Virology 113(2):544–555

    Article  CAS  PubMed  Google Scholar 

  14. Li W, Brinton MA (2001) The 3′ stem loop of the West Nile virus genomic RNA can suppress translation of chimeric mRNAs. Virology 287(1):49–61

    Article  CAS  PubMed  Google Scholar 

  15. Markoff L (2003) 5′- and 3′-noncoding regions in flavivirus RNA. Adv Virus Res 59:177–228

    Article  CAS  PubMed  Google Scholar 

  16. Zhang B, Dong H, Stein DA, Iversen PL, Shi PY (2008) West Nile virus genome cyclization and RNA replication require two pairs of long-distance RNA interactions. Virology 373(1):1–13

    Article  CAS  PubMed  Google Scholar 

  17. Dong H, Ray D, Ren S, Zhang B, Puig-Basagoiti F, Takagi Y et al (2007) Distinct RNA elements confer specificity to flavivirus RNA cap methylation events. J Virol 81(9):4412–4421, Pubmed Central PMCID: 1900168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brinton MA (2014) Replication cycle and molecular biology of the West Nile virus. Viruses 6(1):13–53, Pubmed Central PMCID: 3917430

    Article  PubMed Central  Google Scholar 

  19. Brinton MA, Fernandez AV, Dispoto JH (1986) The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153(1):113–121

    Article  CAS  PubMed  Google Scholar 

  20. Martin-Acebes MA, Saiz JC (2012) West Nile virus: a re-emerging pathogen revisited. World J Virol 1(2):51–70, Pubmed Central PMCID: 3782267

    Article  PubMed  PubMed Central  Google Scholar 

  21. Davis WG, Blackwell JL, Shi PY, Brinton MA (2007) Interaction between the cellular protein eEF1A and the 3′-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J Virol 81(18):10172–10187, Pubmed Central PMCID: 2045417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi PY, Li W, Brinton MA (1996) Cell proteins bind specifically to West Nile virus minus-strand 3′ stem-loop RNA. J Virol 70(9):6278–6287, Pubmed Central PMCID: 190653

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Villordo SM, Gamarnik AV (2009) Genome cyclization as strategy for flavivirus RNA replication. Virus Res 139(2):230–239

    Article  CAS  PubMed  Google Scholar 

  24. Villordo SM, Alvarez DE, Gamarnik AV (2010) A balance between circular and linear forms of the dengue virus genome is crucial for viral replication. RNA 16(12):2325–2335, Pubmed Central PMCID: 2995394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iglesias NG, Gamarnik AV (2011) Dynamic RNA structures in the dengue virus genome. RNA Biol 8(2):249–257

    Article  CAS  PubMed  Google Scholar 

  26. Brinton MA (2002) The molecular biology of West Nile virus: a new invader of the western hemisphere. Annu Rev Microbiol 56:371–402

    Article  CAS  PubMed  Google Scholar 

  27. Nowak T, Farber PM, Wengler G, Wengler G (1989) Analyses of the terminal sequences of West Nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology 169(2):365–376

    Article  CAS  PubMed  Google Scholar 

  28. Lobigs M (1993) Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proc Natl Acad Sci U S A 90(13):6218–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Y, Kaufmann B, Chipman PR, Kuhn RJ, Rossmann MG (2007) Structure of immature West Nile virus. J Virol 81(11):6141–6145, Pubmed Central PMCID: 1900247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferlenghi I, Clarke M, Ruttan T, Allison SL, Schalich J, Heinz FX et al (2001) Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol Cell 7(3):593–602

    Article  CAS  PubMed  Google Scholar 

  31. Khromykh AA, Westaway EG (1996) RNA binding properties of core protein of the flavivirus Kunjin. Arch Virol 141(3-4):685–699

    Article  CAS  PubMed  Google Scholar 

  32. Heinz FX, Mandl CW, Holzmann H, Kunz C, Harris BA, Rey F et al (1991) The flavivirus envelope protein E: isolation of a soluble form from tick-borne encephalitis virus and its crystallization. J Virol 65(10):5579–5583, Pubmed Central PMCID: 249068

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mandl CW, Guirakhoo F, Holzmann H, Heinz FX, Kunz C (1989) Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. J Virol 63(2):564–571, Pubmed Central PMCID: 247724

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Adams SC, Broom AK, Sammels LM, Hartnett AC, Howard MJ, Coelen RJ et al (1995) Glycosylation and antigenic variation among Kunjin virus isolates. Virology 206(1):49–56

    Article  CAS  PubMed  Google Scholar 

  35. Beasley DW, Whiteman MC, Zhang S, Huang CY, Schneider BS, Smith DR et al (2005) Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79(13):8339–8347, Pubmed Central PMCID: 1143769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martina BE, Koraka P, van den Doel P, van Amerongen G, Rimmelzwaan GF, Osterhaus AD (2008) Immunization with West Nile virus envelope domain III protects mice against lethal infection with homologous and heterologous virus. Vaccine 26(2):153–157

    Article  CAS  PubMed  Google Scholar 

  37. Chambers TJ, Halevy M, Nestorowicz A, Rice CM, Lustig S (1998) West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness. J Gen Virol 79(Pt 10):2375–2380

    Article  CAS  PubMed  Google Scholar 

  38. Wu KP, Wu CW, Tsao YP, Kuo TW, Lou YC, Lin CW et al (2003) Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein. J Biol Chem 278(46):46007–46013

    Article  CAS  PubMed  Google Scholar 

  39. Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375(6529):291–298

    Article  CAS  PubMed  Google Scholar 

  40. Bonafe N, Rininger JA, Chubet RG, Foellmer HG, Fader S, Anderson JF et al (2009) A recombinant West Nile virus envelope protein vaccine candidate produced in Spodoptera frugiperda expresSF+ cells. Vaccine 27(2):213–222, Pubmed Central PMCID: 2651515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sultana H, Foellmer HG, Neelakanta G, Oliphant T, Engle M, Ledizet M et al (2009) Fusion loop peptide of the West Nile virus envelope protein is essential for pathogenesis and is recognized by a therapeutic cross-reactive human monoclonal antibody. J Immunol 183(1):650–660, Pubmed Central PMCID: 3690769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luo Y, Guo X, Yan H, Fang D, Zeng G, Zhou J et al (2015) Comprehensive mapping infection-enhancing epitopes of dengue pr protein using polyclonal antibody against prM. Appl Microbiol Biotechnol 99(14):5917–5927, Pubmed Central PMCID: 4480844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gillespie LK, Hoenen A, Morgan G, Mackenzie JM (2010) The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J Virol 84(20):10438–10447, Pubmed Central PMCID: 2950591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR et al (2008) Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319(5871):1834–1837

    Article  CAS  PubMed  Google Scholar 

  45. Macdonald J, Tonry J, Hall RA, Williams B, Palacios G, Ashok MS et al (2005) NS1 protein secretion during the acute phase of West Nile virus infection. J Virol 79(22):13924–13933, Pubmed Central PMCID: 1280181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cauchi MR, Henchal EA, Wright PJ (1991) The sensitivity of cell-associated dengue virus proteins to trypsin and the detection of trypsin-resistant fragments of the nonstructural glycoprotein NS1. Virology 180(2):659–667

    Article  CAS  PubMed  Google Scholar 

  47. Crooks AJ, Lee JM, Easterbrook LM, Timofeev AV, Stephenson JR (1994) The NS1 protein of tick-borne encephalitis virus forms multimeric species upon secretion from the host cell. J Gen Virol 75(Pt 12):3453–3460

    Article  CAS  PubMed  Google Scholar 

  48. Flamand M, Megret F, Mathieu M, Lepault J, Rey FA, Deubel V (1999) Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol 73(7):6104–6110, Pubmed Central PMCID: 112675

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Westaway EG, Goodman MR (1987) Variation in distribution of the three flavivirus-specified glycoproteins detected by immunofluorescence in infected vero cells. Arch Virol 94(3-4):215–228

    Article  CAS  PubMed  Google Scholar 

  50. Yokota S, Okabayashi T, Fujii N (2010) The battle between virus and host: modulation of Toll-like receptor signaling pathways by virus infection. Mediators Inflamm 2010:184328, Pubmed Central PMCID: 2903949

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chang YS, Liao CL, Tsao CH, Chen MC, Liu CI, Chen LK et al (1999) Membrane permeabilization by small hydrophobic nonstructural proteins of Japanese encephalitis virus. J Virol 73(8):6257–6264, Pubmed Central PMCID: 112703

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rossi SL, Fayzulin R, Dewsbury N, Bourne N, Mason PW (2007) Mutations in West Nile virus nonstructural proteins that facilitate replicon persistence in vitro attenuate virus replication in vitro and in vivo. Virology 364(1):184–195

    Article  CAS  PubMed  Google Scholar 

  53. Leung JY, Pijlman GP, Kondratieva N, Hyde J, Mackenzie JM, Khromykh AA (2008) Role of nonstructural protein NS2A in flavivirus assembly. J Virol 82(10):4731–4741, Pubmed Central PMCID: 2346727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu WJ, Wang XJ, Mokhonov VV, Shi PY, Randall R, Khromykh AA (2005) Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. J Virol 79(3):1934–1942, Pubmed Central PMCID: 544092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A (2003) Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A 100(24):14333–14338, Pubmed Central PMCID: 283592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alvarez DE, De Lella Ezcurra AL, Fucito S, Gamarnik AV (2005) Role of RNA structures present at the 3′UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339(2):200–212

    Article  CAS  PubMed  Google Scholar 

  57. Falgout B, Miller RH, Lai CJ (1993) Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B-NS3 protease activity. J Virol 67(4):2034–2042, Pubmed Central PMCID: 240272

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Droll DA, Krishna Murthy HM, Chambers TJ (2000) Yellow fever virus NS2B-NS3 protease: charged-to-alanine mutagenesis and deletion analysis define regions important for protease complex formation and function. Virology 275(2):335–347

    Article  CAS  PubMed  Google Scholar 

  59. Chappell KJ, Stoermer MJ, Fairlie DP, Young PR (2008) West Nile Virus NS2B/NS3 protease as an antiviral target. Curr Med Chem 15(27):2771–2784

    Article  CAS  PubMed  Google Scholar 

  60. Chappell KJ, Stoermer MJ, Fairlie DP, Young PR (2008) Mutagenesis of the West Nile virus NS2B cofactor domain reveals two regions essential for protease activity. J Gen Virol 89(Pt 4):1010–1014

    Article  CAS  PubMed  Google Scholar 

  61. Yusof R, Clum S, Wetzel M, Murthy HM, Padmanabhan R (2000) Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem 275(14):9963–9969

    Article  CAS  PubMed  Google Scholar 

  62. Robin G, Chappell K, Stoermer MJ, Hu SH, Young PR, Fairlie DP et al (2009) Structure of West Nile virus NS3 protease: ligand stabilization of the catalytic conformation. J Mol Biol 385(5):1568–1577

    Article  CAS  PubMed  Google Scholar 

  63. Noble CG, Seh CC, Chao AT, Shi PY (2012) Ligand-bound structures of the dengue virus protease reveal the active conformation. J Virol 86(1):438–446, Pubmed Central PMCID: 3255909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shiryaev SA, Chernov AV, Aleshin AE, Shiryaeva TN, Strongin AY (2009) NS4A regulates the ATPase activity of the NS3 helicase: a novel cofactor role of the non-structural protein NS4A from West Nile virus. J Gen Virol 90(Pt 9):2081–2085, Pubmed Central PMCID: 2887571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chua JJ, Ng MM, Chow VT (2004) The non-structural 3 (NS3) protein of dengue virus type 2 interacts with human nuclear receptor binding protein and is associated with alterations in membrane structure. Virus Res 102(2):151–163

    Article  CAS  PubMed  Google Scholar 

  66. Wicker JA, Whiteman MC, Beasley DW, Davis CT, McGee CE, Lee JC et al (2012) Mutational analysis of the West Nile virus NS4B protein. Virology 426(1):22–33, Pubmed Central PMCID: 4583194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaufusi PH, Kelley JF, Yanagihara R, Nerurkar VR (2014) Induction of endoplasmic reticulum-derived replication-competent membrane structures by West Nile virus non-structural protein 4B. PLoS One 9(1), e84040, Pubmed Central PMCID: 3896337

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lin C, Amberg SM, Chambers TJ, Rice CM (1993) Cleavage at a novel site in the NS4A region by the yellow fever virus NS2B-3 proteinase is a prerequisite for processing at the downstream 4A/4B signalase site. J Virol 67(4):2327–2335, Pubmed Central PMCID: 240389

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Davidson AD (2009) Chapter 2. New insights into flavivirus nonstructural protein 5. Adv Virus Res 74:41–101

    Article  CAS  PubMed  Google Scholar 

  70. Dong H, Ren S, Zhang B, Zhou Y, Puig-Basagoiti F, Li H et al (2008) West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism. J Virol 82(9):4295–4307, Pubmed Central PMCID: 2293060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gamino V, Hofle U (2013) Pathology and tissue tropism of natural West Nile virus infection in birds: a review. Vet Res 44:39, Pubmed Central PMCID: 3686667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD (2006) Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci 273(1599):2327–2333, Pubmed Central PMCID: 1636093

    Article  PubMed  Google Scholar 

  73. Brown AN, Kent KA, Bennett CJ, Bernard KA (2007) Tissue tropism and neuroinvasion of West Nile virus do not differ for two mouse strains with different survival rates. Virology 368(2):422–430, Pubmed Central PMCID: 2814419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. King NJ, Getts DR, Getts MT, Rana S, Shrestha B, Kesson AM (2007) Immunopathology of flavivirus infections. Immunol Cell Biol 85(1):33–42

    Article  CAS  PubMed  Google Scholar 

  75. Chu JJ, Ng ML (2004) Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78(19):10543–10555, Pubmed Central PMCID: 516396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chu JJ, Ng ML (2004) Interaction of West Nile virus with alpha v beta 3 integrin mediates virus entry into cells. J Biol Chem 279(52):54533–54541

    Article  CAS  PubMed  Google Scholar 

  77. Kimura T, Ohyama A (1988) Association between the pH-dependent conformational change of West Nile flavivirus E protein and virus-mediated membrane fusion. J Gen Virol 69(Pt 6):1247–1254

    Article  CAS  PubMed  Google Scholar 

  78. Hoenen A, Liu W, Kochs G, Khromykh AA, Mackenzie JM (2007) West Nile virus-induced cytoplasmic membrane structures provide partial protection against the interferon-induced antiviral MxA protein. J Gen Virol 88(Pt 11):3013–3017

    Article  CAS  PubMed  Google Scholar 

  79. Mackenzie JM, Jones MK, Westaway EG (1999) Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells. J Virol 73(11):9555–9567, Pubmed Central PMCID: 112990

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mackenzie JM, Kenney MT, Westaway EG (2007) West Nile virus strain Kunjin NS5 polymerase is a phosphoprotein localized at the cytoplasmic site of viral RNA synthesis. J Gen Virol 88(Pt 4):1163–1168

    Article  CAS  PubMed  Google Scholar 

  81. Mackenzie JM, Khromykh AA, Jones MK, Westaway EG (1998) Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245(2):203–215

    Article  CAS  PubMed  Google Scholar 

  82. Roosendaal J, Westaway EG, Khromykh A, Mackenzie JM (2006) Regulated cleavages at the West Nile virus NS4A-2K-NS4B junctions play a major role in rearranging cytoplasmic membranes and Golgi trafficking of the NS4A protein. J Virol 80(9):4623–4632, Pubmed Central PMCID: 1472005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Flenniken ML, Andino R (2013) Non-specific dsRNA-mediated antiviral response in the honey bee. PLoS One 8(10), e77263, Pubmed Central PMCID: 3795074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Meylan E, Tschopp J (2006) Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell 22(5):561–569

    Article  CAS  PubMed  Google Scholar 

  85. Urbanowski MD, Hobman TC (2013) The West Nile virus capsid protein blocks apoptosis through a phosphatidylinositol 3-kinase-dependent mechanism. J Virol 87(2):872–881, Pubmed Central PMCID: 3554064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lum H, Malik AB (1994) Regulation of vascular endothelial barrier function. Am J Physiol 267(3 Pt 1):L223–L241

    CAS  PubMed  Google Scholar 

  87. Medigeshi GR, Hirsch AJ, Brien JD, Uhrlaub JL, Mason PW, Wiley C et al (2009) West nile virus capsid degradation of claudin proteins disrupts epithelial barrier function. J Virol 83(12):6125–6134, Pubmed Central PMCID: 2687390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu WJ, Wang XJ, Clark DC, Lobigs M, Hall RA, Khromykh AA (2006) A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol 80(5):2396–2404, Pubmed Central PMCID: 1395377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Diamond MS, Roberts TG, Edgil D, Lu B, Ernst J, Harris E (2000) Modulation of dengue virus infection in human cells by alpha, beta, and gamma interferons. J Virol 74(11):4957–4966, Pubmed Central PMCID: 110847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lin YL, Huang YL, Ma SH, Yeh CT, Chiou SY, Chen LK et al (1997) Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. J Virol 71(7):5227–5235, Pubmed Central PMCID: 191758

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Avirutnan P, Fuchs A, Hauhart RE, Somnuke P, Youn S, Diamond MS et al (2010) Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med 207(4):793–806, Pubmed Central PMCID: 2856034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Avirutnan P, Hauhart RE, Somnuke P, Blom AM, Diamond MS, Atkinson JP (2011) Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J Immunol 187(1):424–433, Pubmed Central PMCID: 3119735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Falgout B, Bray M, Schlesinger JJ, Lai CJ (1990) Immunization of mice with recombinant vaccinia virus expressing authentic dengue virus nonstructural protein NS1 protects against lethal dengue virus encephalitis. J Virol 64(9):4356–4363, Pubmed Central PMCID: 247903

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Beasley DW, Barrett AD (2002) Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J Virol 76(24):13097–13100, Pubmed Central PMCID: 136710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sapkal GN, Harini S, Ayachit VM, Fulmali PV, Mahamuni SA, Bondre VP et al (2011) Neutralization escape variant of West Nile virus associated with altered peripheral pathogenicity and differential cytokine profile. Virus Res 158(1-2):130–139

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonya M. Colpitts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Londono-Renteria, B., Colpitts, T.M. (2016). A Brief Review of West Nile Virus Biology. In: Colpitts, T. (eds) West Nile Virus. Methods in Molecular Biology, vol 1435. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3670-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3670-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3668-7

  • Online ISBN: 978-1-4939-3670-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics