Skip to main content

Development and Characterization of Cell-Specific Androgen Receptor Knockout Mice

  • Protocol
  • First Online:
The Nuclear Receptor Superfamily

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1443))

Abstract

Conditional gene targeting has revolutionized molecular genetic analysis of nuclear receptor proteins, however development and analysis of such conditional knockouts is far from simple, with many caveats and pitfalls waiting to snare the novice or unprepared. In this chapter, we describe our experience of generating and analyzing mouse models with conditional ablation of the androgen receptor (AR) from tissues of the reproductive system and other organs. The guidance, suggestions, and protocols outlined in the chapter provide the key starting point for analyses of conditional-ARKO mice, completing them as described provides an excellent framework for further focussed project-specific analyses, and applies equally well to analysis of reproductive tissues from any mouse model generated through conditional gene targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jorgez CJ, Lin YN, Matzuk MM (2005) Genetic manipulations to study reproduction. Mol Cell Endocrinol 234:127–135

    Article  CAS  PubMed  Google Scholar 

  2. Roy A, Matzuk MM (2006) Deconstructing mammalian reproduction: using knockouts to define fertility pathways. Reproduction 131:207–219

    Article  CAS  PubMed  Google Scholar 

  3. Cooke HJ, Saunders PT (2002) Mouse models of male infertility. Nat Rev Genet 3:790–801

    Article  CAS  PubMed  Google Scholar 

  4. Jamsai D, O’Bryan MK (2010) Genome-wide ENU mutagenesis for the discovery of novel male fertility regulators. Syst Biol Reprod Med 56:246–259

    Article  CAS  PubMed  Google Scholar 

  5. Borg CL, Wolski KM, Gibbs GM, O’Bryan MK (2010) Phenotyping male infertility in the mouse: how to get the most out of a ‘non-performer’. Hum Reprod Update 16:205–224

    Article  PubMed  PubMed Central  Google Scholar 

  6. O’Bryan MK, de Kretser D (2006) Mouse models for genes involved in impaired spermatogenesis. Int J Androl 29:76–89, Discussion 105–108

    Article  PubMed  Google Scholar 

  7. Yatsenko AN, Iwamori N, Iwamori T, Matzuk MM (2010) The power of mouse genetics to study spermatogenesis. J Androl 31:34–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85:5166–5170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sauer B, Henderson N (1989) Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res 17:147–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hadjantonakis AK, Pirity M, Nagy A (1999) Cre recombinase mediated alterations of the mouse genome using embryonic stem cells. Methods Mol Biol 97:101–122

    CAS  PubMed  Google Scholar 

  11. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    Article  CAS  PubMed  Google Scholar 

  12. Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  CAS  PubMed  Google Scholar 

  13. Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagy A, Mar L, Watts G (2009) Creation and use of a cre recombinase transgenic database. Methods Mol Biol 530:365–378

    Article  CAS  PubMed  Google Scholar 

  15. Thyagarajan B, Guimaraes MJ, Groth AC, Calos MP (2000) Mammalian genomes contain active recombinase recognition sites. Gene 244:47–54

    Article  CAS  PubMed  Google Scholar 

  16. Semprini S, Troup TJ, Kotelevtseva N, King K, Davis JR et al (2007) Cryptic loxP sites in mammalian genomes: genome-wide distribution and relevance for the efficiency of BAC/PAC recombineering techniques. Nucleic Acids Res 35:1402–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwan KM (2002) Conditional alleles in mice: practical considerations for tissue-specific knockouts. Genesis 32:49–62

    Article  CAS  PubMed  Google Scholar 

  18. Gossen M, Bujard H (2002) Studying gene function in eukaryotes by conditional gene inactivation. Annu Rev Genet 36:153–173

    Article  CAS  PubMed  Google Scholar 

  19. Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755

    Article  CAS  PubMed  Google Scholar 

  20. Smith L (2011) Good planning and serendipity: exploiting the Cre/Lox system in the testis. Reproduction 141:151–161

    Article  CAS  PubMed  Google Scholar 

  21. Wang X (2009) Cre transgenic mouse lines. Methods Mol Biol 561:265–273

    Article  CAS  PubMed  Google Scholar 

  22. Welsh M, Saunders PT, Atanassova N, Sharpe RM, Smith LB (2009) Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J 23:4218–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Welsh M, Moffat L, Belling K, de Franca LR, Segatelli TM et al (2012) Androgen receptor signalling in peritubular myoid cells is essential for normal differentiation and function of adult Leydig cells. Int J Androl 35:25–40

    Article  CAS  PubMed  Google Scholar 

  24. Welsh M, Moffat L, Jack L, McNeilly A, Brownstein D et al (2010) Deletion of androgen receptor in the smooth muscle of the seminal vesicles impairs secretory function and alters its responsiveness to exogenous testosterone and estradiol. Endocrinology 151:3374–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Welsh M, Moffat L, McNeilly A, Brownstein D, Saunders PT et al (2011) Smooth muscle cell-specific knockout of androgen receptor: a new model for prostatic disease. Endocrinology 152:3541–3551

    Article  CAS  PubMed  Google Scholar 

  26. Lobe CG, Koop KE, Kreppner W, Lomeli H, Gertsenstein M et al (1999) Z/AP, a double reporter for cre-mediated recombination. Dev Biol 208:281–292

    Article  CAS  PubMed  Google Scholar 

  27. Mao X, Fujiwara Y, Orkin SH (1999) Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc Natl Acad Sci U S A 96:5037–5042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  CAS  PubMed  Google Scholar 

  29. Yamauchi Y, Abe K, Mantani A, Hitoshi Y, Suzuki M et al (1999) A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice. Dev Biol 212:191–203

    Article  CAS  PubMed  Google Scholar 

  30. Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH et al (1996) Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87:1317–1326

    Article  CAS  PubMed  Google Scholar 

  31. O’Gorman S, Dagenais NA, Qian M, Marchuk Y (1997) Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc Natl Acad Sci U S A 94:14602–14607

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sakai K, Miyazaki J (1997) A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochem Biophys Res Commun 237:318–324

    Article  CAS  PubMed  Google Scholar 

  33. De Gasperi R, Rocher AB, Sosa MA, Wearne SL, Perez GM et al (2008) The IRG mouse: a two-color fluorescent reporter for assessing Cre-mediated recombination and imaging complex cellular relationships in situ. Genesis 46: spcone

    Google Scholar 

  34. Kawamoto S, Niwa H, Tashiro F, Sano S, Kondoh G et al (2000) A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre-mediated recombination. FEBS Lett 470:263–268

    Article  CAS  PubMed  Google Scholar 

  35. Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37:43–53

    Article  CAS  PubMed  Google Scholar 

  36. Mao X, Fujiwara Y, Chapdelaine A, Yang H, Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97:324–326

    Article  CAS  PubMed  Google Scholar 

  37. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605

    Article  CAS  PubMed  Google Scholar 

  38. Novak A, Guo C, Yang W, Nagy A, Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28:147–155

    Article  CAS  PubMed  Google Scholar 

  39. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vintersten K, Monetti C, Gertsenstein M, Zhang P, Laszlo L et al (2004) Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis 40:241–246

    Article  CAS  PubMed  Google Scholar 

  41. Weber P, Schuler M, Gerard C, Mark M, Metzger D et al (2003) Temporally controlled site-specific mutagenesis in the germ cell lineage of the mouse testis. Biol Reprod 68:553–559

    Article  CAS  PubMed  Google Scholar 

  42. Ishikawa TO, Herschman HR (2010) Conditional bicistronic Cre reporter line expressing both firefly luciferase and beta-galactosidase. Mol Imaging Biol 13(2):284–292

    Article  PubMed Central  Google Scholar 

  43. Lyons SK, Meuwissen R, Krimpenfort P, Berns A (2003) The generation of a conditional reporter that enables bioluminescence imaging of Cre/loxP-dependent tumorigenesis in mice. Cancer Res 63:7042–7046

    CAS  PubMed  Google Scholar 

  44. Safran M, Kim WY, Kung AL, Horner JW, DePinho RA et al (2003) Mouse reporter strain for noninvasive bioluminescent imaging of cells that have undergone Cre-mediated recombination. Mol Imaging 2:297–302

    Article  CAS  PubMed  Google Scholar 

  45. Lee JY, Ristow M, Lin X, White MF, Magnuson MA et al (2006) RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. J Biol Chem 281:2649–2653

    Article  CAS  PubMed  Google Scholar 

  46. De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M et al (2004) A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci U S A 101:1327–1332

    Article  PubMed  PubMed Central  Google Scholar 

  47. Holdcraft RW, Braun RE (2004) Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development 131:459–467

    Article  CAS  PubMed  Google Scholar 

  48. Kato M, Shimada K, Saito N, Noda K, Ohta M (1995) Expression of P450 17 alpha-hydroxylase and P450aromatase genes in isolated granulosa, theca interna, and theca externa layers of chicken ovarian follicles during follicular growth. Biol Reprod 52:405–410

    Article  CAS  PubMed  Google Scholar 

  49. Notini AJ, Davey RA, McManus JF, Bate KL, Zajac JD (2005) Genomic actions of the androgen receptor are required for normal male sexual differentiation in a mouse model. J Mol Endocrinol 35:547–555

    Article  CAS  PubMed  Google Scholar 

  50. Yeh S, Tsai MY, Xu Q, Mu XM, Lardy H et al (2002) Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci U S A 99:13498–13503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. De Gendt K, Verhoeven G (2012) Tissue- and cell-specific functions of the androgen receptor revealed through conditional knockout models in mice. Mol Cell Endocrinol 352:13–25

    Article  PubMed  Google Scholar 

  52. Walters KA, Simanainen U, Handelsman DJ (2010) Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum Reprod Update 16:543–558

    Article  CAS  PubMed  Google Scholar 

  53. Matsumoto T, Shiina H, Kawano H, Sato T, Kato S (2008) Androgen receptor functions in male and female physiology. J Steroid Biochem Mol Biol 109:236–241

    Article  CAS  PubMed  Google Scholar 

  54. Verhoeven G, Willems A, Denolet E, Swinnen JV, De Gendt K (2010) Androgens and spermatogenesis: lessons from transgenic mouse models. Philos Trans R Soc Lond B Biol Sci 365:1537–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang RS, Yeh S, Tzeng CR, Chang C (2009) Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev 30:119–132

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhou X (2010) Roles of androgen receptor in male and female reproduction: lessons from global and cell-specific androgen receptor knockout (ARKO) mice. J Androl 31:235–243

    Article  PubMed  Google Scholar 

  57. De Gendt K, Verhoeven G (2009) Tissue-selective knockouts of steroid receptors: a novel paradigm in the study of steroid action. In: McEwan IJ (ed) Methods in molecular biology: the nuclear receptor superfamily. Humana Press, New York, pp 237–261

    Chapter  Google Scholar 

  58. Chang C, Chen YT, Yeh SD, Xu Q, Wang RS et al (2004) Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci U S A 101:6876–6881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lim P, Robson M, Spaliviero J, McTavish KJ, Jimenez M et al (2009) Sertoli cell androgen receptor DNA binding domain is essential for the completion of spermatogenesis. Endocrinology 150:4755–4765

    Article  CAS  PubMed  Google Scholar 

  60. O’Hara L, Smith LB (2012) Androgen receptor signalling in vascular endothelial cells is dispensable for spermatogenesis and male fertility. BMC Res Notes 5:16

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tsai MY, Yeh SD, Wang RS, Yeh S, Zhang C et al (2006) Differential effects of spermatogenesis and fertility in mice lacking androgen receptor in individual testis cells. Proc Natl Acad Sci U S A 103:18975–18980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xu Q, Lin HY, Yeh SD, Yu IC, Wang RS et al (2007) Infertility with defective spermatogenesis and steroidogenesis in male mice lacking androgen receptor in Leydig cells. Endocrine 32:96–106

    Article  CAS  PubMed  Google Scholar 

  63. Simanainen U, McNamara K, Davey RA, Zajac JD, Handelsman DJ (2008) Severe subfertility in mice with androgen receptor inactivation in sex accessory organs but not in testis. Endocrinology 149:3330–3338

    Article  CAS  PubMed  Google Scholar 

  64. O’Hara L, Welsh M, Saunders PT, Smith LB (2011) Androgen receptor expression in the caput epididymal epithelium is essential for development of the initial segment and epididymal spermatozoa transit. Endocrinology 152:718–729

    Article  PubMed  Google Scholar 

  65. Krutskikh A, De Gendt K, Sharp V, Verhoeven G, Poutanen M et al (2011) Targeted inactivation of the androgen receptor gene in murine proximal epididymis causes epithelial hypotrophy and obstructive azoospermia. Endocrinology 152:689–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaftanovskaya EM, Huang Z, Barbara AM, De Gendt K, Verhoeven G et al (2012) Cryptorchidism in mice with an androgen receptor ablation in gubernaculum testis. Mol Endocrinol 26:598–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McInnes KJ, Smith LB, Hunger NI, Saunders PT, Andrew R et al (2012) Deletion of the androgen receptor in adipose tissue in male mice elevates retinol binding protein 4 and reveals independent effects on visceral fat mass and on glucose homeostasis. Diabetes 61:1072–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yu IC, Lin HY, Liu NC, Wang RS, Sparks JD et al (2008) Hyperleptinemia without obesity in male mice lacking androgen receptor in adipose tissue. Endocrinology 149:2361–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Altuwaijri S, Chuang KH, Lai KP, Lai JJ, Lin HY et al (2009) Susceptibility to autoimmunity and B cell resistance to apoptosis in mice lacking androgen receptor in B cells. Mol Endocrinol 23:444–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lai KP, Lai JJ, Chang P, Altuwaijri S, Hsu JW et al (2013) Targeting thymic epithelia AR enhances T-cell reconstitution and bone marrow transplant grafting efficacy. Mol Endocrinol 27:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lai JJ, Lai KP, Chuang KH, Chang P, Yu IC et al (2009) Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression. J Clin Invest 119:3739–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin HY, Xu Q, Yeh S, Wang RS, Sparks JD et al (2005) Insulin and leptin resistance with hyperleptinemia in mice lacking androgen receptor. Diabetes 54:1717–1725

    Article  CAS  PubMed  Google Scholar 

  73. Yu IC, Lin HY, Liu NC, Sparks JD, Yeh S et al (2013) Neuronal androgen receptor regulates insulin sensitivity via suppression of hypothalamic NF-kappaB-mediated PTP1B expression. Diabetes 62:411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Raskin K, de Gendt K, Duittoz A, Liere P, Verhoeven G et al (2009) Conditional inactivation of androgen receptor gene in the nervous system: effects on male behavioral and neuroendocrine responses. J Neurosci 29:4461–4470

    Article  CAS  PubMed  Google Scholar 

  75. Notini AJ, McManus JF, Moore A, Bouxsein M, Jimenez M et al (2007) Osteoblast deletion of exon 3 of the androgen receptor gene results in trabecular bone loss in adult male mice. J Bone Miner Res 22:347–356

    Article  CAS  PubMed  Google Scholar 

  76. Chiang C, Chiu M, Moore AJ, Anderson PH, Ghasem-Zadeh A et al (2009) Mineralization and bone resorption are regulated by the androgen receptor in male mice. J Bone Miner Res 24:621–631

    Article  CAS  PubMed  Google Scholar 

  77. Sinnesael M, Claessens F, Laurent M, Dubois V, Boonen S et al (2012) Androgen receptor (AR) in osteocytes is important for the maintenance of male skeletal integrity: evidence from targeted AR disruption in mouse osteocytes. J Bone Miner Res 27:2535–2543

    Article  CAS  PubMed  Google Scholar 

  78. Dubois V, Laurent MR, Sinnesael M, Cielen N, Helsen C et al (2014) A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB J 28(7):2979–2994

    Article  CAS  PubMed  Google Scholar 

  79. Ophoff J, Van Proeyen K, Callewaert F, De Gendt K, De Bock K et al (2009) Androgen signaling in myocytes contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. Endocrinology 150:3558–3566

    Article  CAS  PubMed  Google Scholar 

  80. Chambon C, Duteil D, Vignaud A, Ferry A, Messaddeq N et al (2010) Myocytic androgen receptor controls the strength but not the mass of limb muscles. Proc Natl Acad Sci U S A 107:14327–14332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Welsh M, Sharpe RM, Walker M, Smith LB, Saunders PT (2009) New insights into the role of androgens in wolffian duct stabilization in male and female rodents. Endocrinology 150:2472–2480

    Article  CAS  PubMed  Google Scholar 

  82. Kawano H, Sato T, Yamada T, Matsumoto T, Sekine K et al (2003) Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci U S A 100:9416–9421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Willems A, De Gendt K, Deboel L, Swinnen JV, Verhoeven G (2011) The development of an inducible androgen receptor knockout model in mouse to study the postmeiotic effects of androgens on germ cell development. Spermatogenesis 1:341–353

    Article  PubMed  PubMed Central  Google Scholar 

  84. Welsh M, Saunders PT, Fisken M, Scott HM, Hutchison GR et al (2008) Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest 118:1479–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hughes IA, Acerini CL (2008) Factors controlling testis descent. Eur J Endocrinol 159(Suppl 1):S75–S82

    Article  CAS  PubMed  Google Scholar 

  86. Imperato-McGinley J, Binienda Z, Gedney J, Vaughan ED Jr (1986) Nipple differentiation in fetal male rats treated with an inhibitor of the enzyme 5 alpha-reductase: definition of a selective role for dihydrotestosterone. Endocrinology 118:132–137

    Article  CAS  PubMed  Google Scholar 

  87. Abe K, Takano H (1989) Cytological response of the principal cells in the initial segment of the epididymal duct to efferent duct cutting in mice. Arch Histol Cytol 52:321–326

    Article  CAS  PubMed  Google Scholar 

  88. Mayhew TM (1992) A review of recent advances in stereology for quantifying neural structure. J Neurocytol 21:313–328

    Article  CAS  PubMed  Google Scholar 

  89. West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  CAS  PubMed  Google Scholar 

  90. O’Shaughnessy PJ, Monteiro A, Abel M (2012) Testicular development in mice lacking receptors for follicle stimulating hormone and androgen. PLoS One 7:e35136

    Article  PubMed  PubMed Central  Google Scholar 

  91. Russell LD (1990) Histological and histopathological evaluation of the testis, vol xiv. Cache River Press, Clearwater, Fl, 286 p

    Google Scholar 

  92. Handelsman DJ, Jimenez M, Singh GK, Spaliviero J, Desai R et al (2015) Measurement of testosterone by immunoassays and mass spectrometry in mouse serum, testicular, and ovarian extracts. Endocrinology 1:400–405

    Article  Google Scholar 

  93. Chen H, Ge RS, Zirkin BR (2009) Leydig cells: from stem cells to aging. Mol Cell Endocrinol 306:9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. O’Shaughnessy PJ, Johnston H, Willerton L, Baker PJ (2002) Failure of normal adult Leydig cell development in androgen-receptor-deficient mice. J Cell Sci 115:3491–3496

    PubMed  Google Scholar 

  95. Baker PJ, O’Shaughnessy PJ (2001) Expression of prostaglandin D synthetase during development in the mouse testis. Reproduction 122:553–559

    Article  CAS  PubMed  Google Scholar 

  96. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Smith group past and present, and our wider collaborators for their efforts in developing and refining the protocols described in this chapter. We also thank Saloni Patel for providing the images used in Fig. 2.

Funding: The work described in this chapter was funded by a MRC Programme Grant Award (G1100354/1) to L.B.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee B. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

O’Hara, L., Smith, L.B. (2016). Development and Characterization of Cell-Specific Androgen Receptor Knockout Mice. In: McEwan, PhD, I. (eds) The Nuclear Receptor Superfamily. Methods in Molecular Biology, vol 1443. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3724-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3724-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3722-6

  • Online ISBN: 978-1-4939-3724-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics