Skip to main content

Construction of Modular Lentiviral Vectors for Effective Gene Expression and Knockdown

  • Protocol
  • First Online:
Lentiviral Vectors and Exosomes as Gene and Protein Delivery Tools

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1448))

Abstract

Elucidating gene function is heavily reliant on the ability to modulate gene expression in biological model systems. Although transient expression systems can provide useful information about the biological outcome resulting from short-term gene overexpression or silencing, methods providing stable integration of desired expression constructs (cDNA or RNA interference) are often preferred for functional studies. To this end, lentiviral vectors offer the ability to deliver long-term and regulated gene expression to mammalian cells, including the expression of gene targeting small hairpin RNAs (shRNAmirs). Unfortunately, constructing vectors containing the desired combination of cDNAs, markers, and shRNAmirs can be cumbersome and time-consuming if using traditional sequence based restriction enzyme and ligation-dependent methods. Here we describe the use of a recombination based Gateway cloning strategy to rapidly and efficiently produce recombinant lentiviral vectors for the expression of one or more cDNAs with or without simultaneous shRNAmir expression. Additionally, we describe a luciferase-based approach to rapidly triage shRNAs for knockdown efficacy and specificity without the need to create stable shRNAmir expressing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vannucci L, Lai M, Chiuppesi F et al (2013) Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 36(1):1–22

    CAS  PubMed  Google Scholar 

  2. Sakuma T, Barry MA, Ikeda Y (2012) Lentiviral vectors: basic to translational. Biochem J 443(3):603–618. doi:10.1042/BJ20120146, BJ20120146 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Palu G, Parolin C, Takeuchi Y et al (2000) Progress with retroviral gene vectors. Rev Med Virol 10(3):185–202, doi:10.1002/(SICI)1099-1654(200005/06)10:3<185::AID-RMV285>3.0.CO;2-8 [pii]

  4. Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    Article  CAS  PubMed  Google Scholar 

  5. Fewell GD, Schmitt K (2006) Vector-based RNAi approaches for stable, inducible and genome-wide screens. Drug Discov Today 11(21–22):975–982. doi:10.1016/j.drudis.2006.09.008, S1359-6446(06)00369-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18(20):6069–6074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berrow NS, Alderton D, Sainsbury S et al (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35(6), e45. doi:10.1093/nar/gkm047, gkm047 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li C, Evans RM (1997) Ligation independent cloning irrespective of restriction site compatibility. Nucleic Acids Res 25(20):4165–4166, doi:gka645 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li MZ, Elledge SJ (2012) SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol 852:51–59. doi:10.1007/978-1-61779-564-0_5

    Article  CAS  PubMed  Google Scholar 

  10. Shuman S (1994) Novel approach to molecular cloning and polynucleotide synthesis using vaccinia DNA topoisomerase. J Biol Chem 269(51):32678–32684

    CAS  PubMed  Google Scholar 

  11. Yang J, Zhang Z, Zhang XA et al (2010) A ligation-independent cloning method using nicking DNA endonuclease. Biotechniques 49(5):817–821. doi:10.2144/000113520, 000113520 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10(11):1788–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nash HA, Mizuuchi K, Enquist LW et al (1981) Strand exchange in lambda integrative recombination: genetics, biochemistry, and models. Cold Spring Harb Symp Quant Biol 45(Pt 1):417–428

    Article  CAS  PubMed  Google Scholar 

  14. Bernard P, Couturier M (1991) The 41 carboxy-terminal residues of the miniF plasmid CcdA protein are sufficient to antagonize the killer activity of the CcdB protein. Mol Gen Genet 226(1–2):297–304

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki Y, Sone T, Yoshida S et al (2004) Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the Multisite Gateway system. J Biotechnol 107(3):233–243, doi:S0168165603002657 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Cheo DL, Titus SA, Byrd DR et al (2004) Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination: functional analysis of multi-segment expression clones. Genome Res 14(10):2111–2120. doi:10.1101/gr.2512204, 14/10b/2111 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xia H, Mao Q, Paulson HL et al (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20(10):1006–1010. doi:10.1038/nbt739, nbt739 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Yu JY, DeRuiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 99(9):6047–6052. doi:10.1073/pnas.092143499, 092143499 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rao DD, Vorhies JS, Senzer N et al (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61(9):746–759. doi:10.1016/j.addr.2009.04.004, S0169-409X(09)00096-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Manjunath N, Wu H, Subramanya S et al (2009) Lentiviral delivery of short hairpin RNAs. Adv Drug Deliv Rev 61(9):732–745. doi:10.1016/j.addr.2009.03.004, S0169-409X(09)00060-X [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296(5567):550–553. doi:10.1126/science.1068999, 1068999 [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Paddison PJ, Caudy AA, Bernstein E et al (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16(8):948–958. doi:10.1101/gad.981002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092):537–541. doi:10.1038/nature04791, nature04791 [pii]

    Article  CAS  PubMed  Google Scholar 

  24. Yi R, Doehle BP, Qin Y et al (2005) Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 11(2):220–226. doi:10.1261/rna.7233305, rna.7233305 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boudreau RL, Monteys AM, Davidson BL (2008) Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs. RNA 14(9):1834–1844. doi:10.1261/rna.1062908, rna.1062908 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. An DS, Qin FX, Auyeung VC et al (2006) Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther 14(4):494–504. doi:10.1016/j.ymthe.2006.05.015, S1525-0016(06)00213-9 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wiznerowicz M, Szulc J, Trono D (2006) Tuning silence: conditional systems for RNA interference. Nat Methods 3(9):682–688. doi:10.1038/nmeth914, nmeth914 [pii]

    Article  CAS  PubMed  Google Scholar 

  28. Dickins RA, Hemann MT, Zilfou JT et al (2005) Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 37(11):1289–1295. doi:10.1038/Ng1651

    CAS  PubMed  Google Scholar 

  29. Stegmeier F, Hu G, Rickles RJ et al (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci U S A 102(37):13212–13217. doi:10.1073/pnas.0506306102, 0506306102 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zeng Y, Cullen BR (2005) Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 280(30):27595–27603. doi:10.1074/jbc.M504714200, M504714200 [pii]

    Article  CAS  PubMed  Google Scholar 

  31. Xia XG, Zhou H, Xu Z (2006) Multiple shRNAs expressed by an inducible pol II promoter can knock down the expression of multiple target genes. Biotechniques 41(1):64–68, doi:000112198 [pii]

    Article  CAS  PubMed  Google Scholar 

  32. Taxman DJ, Livingstone LR, Zhang J et al (2006) Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol 6:7. doi:10.1186/1472-6750-6-7, 1472-6750-6-7 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bassik MC, Lebbink RJ, Churchman LS et al (2009) Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat Methods 6(6):443–445. doi:10.1038/nmeth.1330, nmeth.1330 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li L, Lin X, Khvorova A et al (2007) Defining the optimal parameters for hairpin-based knockdown constructs. RNA 13(10):1765–1774. doi:10.1261/rna.599107, rna.599107 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fellmann C, Zuber J, McJunkin K et al (2011) Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol Cell 41(6):733–746. doi:10.1016/j.molcel.2011.02.008, S1097-2765(11)00091-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Geiling B, Vandal G, Posner AR et al (2013) A modular lentiviral and retroviral construction system to rapidly generate vectors for gene expression and gene knockdown in vitro and in vivo. PLoS One 8(10), e76279. doi:10.1371/journal.pone.0076279, PONE-D-13-22537 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang K, Elledge SJ, Hannon GJ (2006) Lessons from Nature: microRNA-based shRNA libraries. Nat Methods 3(9):707–714. doi:10.1038/nmeth923, nmeth923 [pii]

    Article  CAS  PubMed  Google Scholar 

  38. Dow LE, Premsrirut PK, Zuber J et al (2012) A pipeline for the generation of shRNA transgenic mice. Nat Protoc 7(2):374–393. doi:10.1038/nprot.2011.446, nprot.2011.446 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li LH, Sen A, Murphy SP et al (1999) Apoptosis induced by DNA uptake limits transfection efficiency. Exp Cell Res 253(2):541–550. doi:10.1006/excr.1999.4666, S0014-4827(99)94666-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  40. Hampf M, Gossen M (2006) A protocol for combined Photinus and Renilla luciferase quantification compatible with protein assays. Anal Biochem 356(1):94–99. doi:10.1016/j.ab.2006.04.046, S0003-2697(06)00307-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  41. Dyer BW, Ferrer FA, Klinedinst DK et al (2000) A noncommercial dual luciferase enzyme assay system for reporter gene analysis. Anal Biochem 282(1):158–161. doi:10.1006/abio.2000.4605, S0003-2697(00)94605-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  42. Kwan KM, Fujimoto E, Grabher C et al (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236(11):3088–3099. doi:10.1002/dvdy.21343

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research [operating grant MOP-97925 to DD, Graduate scholarship to AdB]; the Canadian Cancer Society [CCSRI# 2011-700876] and the Canadian Cancer Society [CRS #19087]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dankort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

de Bruyns, A., Geiling, B., Dankort, D. (2016). Construction of Modular Lentiviral Vectors for Effective Gene Expression and Knockdown. In: Federico, M. (eds) Lentiviral Vectors and Exosomes as Gene and Protein Delivery Tools. Methods in Molecular Biology, vol 1448. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3753-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3753-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3751-6

  • Online ISBN: 978-1-4939-3753-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics