Skip to main content

Using High-Speed Chronoamperometry to Measure Biogenic Amine Release and Uptake In Vivo

  • Protocol
  • First Online:
Neurotransmitter Transporters

Part of the book series: Neuromethods ((NM,volume 118))

Abstract

Here, we describe the method of high-speed chronoamperometry and its application for measuring release and clearance of biogenic amine neurotransmitters (serotonin, dopamine, and norepinephrine) in the intact and living mammalian brain. Chronoamperometry belongs to a family of electrochemical techniques collectively known as voltammetry, the only techniques currently available for “real-time” measurement of neurotransmitter transporter activity in vivo. Because of the small size of recording electrodes (<30 μm) and the relatively rapid sampling rate (sub-second), these techniques can be used to quantify release and clearance kinetics for biogenic amines in discrete brain regions. Chronoamperometry has been effectively used to study the impact of drugs, various environmental influences (e.g. stress), the estrous cycle, and age, among other stimuli, on the function of biogenic amine transporters in vivo.

A major part of performing high-speed chronoamperometry is the preparatory work, including fabricating and calibrating carbon fiber electrodes, creating electrode-micropipette assemblies and stereotaxically implanting them in brain. Details for all steps are provided here, including how to histologically verify electrode placement at the conclusion of recordings. Chronoamperometry provides a unique window to “view” biogenic amine transporter function in the living animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kissinger PT, Hart JB, Adams RN (1973) Voltammetry in brain tissue: a new neurophysiological measurement. Brain Res 55:209–213

    Article  CAS  PubMed  Google Scholar 

  2. Cottrell FG (1902) Z Physik Chem 42:385

    Google Scholar 

  3. Gerhardt GA, Oke AF, Nagy G et al (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res 290:390–394

    Article  CAS  PubMed  Google Scholar 

  4. Gerhardt GA, Hoffman A (2001) Effects of recording media composition on the response of Nafion-coated carbon fiber microelectrodes measured using high-speed chronoamperometry. J Neurosci Methods 109:13–21

    Article  CAS  PubMed  Google Scholar 

  5. Crespi F, Sharp T, Maidment N et al (1983) Differential pulse voltammetry in vivo evidence that uric acid contributes to the indole oxidation peak. Neurosci Lett 43:203–207

    Article  CAS  PubMed  Google Scholar 

  6. Crespi F, Garratt JC, Sleight AJ et al (1990) In vivo evidence that 5-hydroxytryptamine (5-HT) neuronal firing and release are not necessarily correlated with 5-HT metabolism. Neuroscience 35:139–144

    Article  CAS  PubMed  Google Scholar 

  7. Cespuglio R, Sarda N, Gharib A et al (1986) Differential pulse voltammetry in vivo with working carbon fiber electrodes: 5-hydroxyindole compounds or uric acid detection? Exp Brain Res 64:589–595

    Article  CAS  PubMed  Google Scholar 

  8. Rivot J-P, Cespuglio R, Puig S et al (1995) In vivo electrochemical monitoring of serotonin in spinal dorsal horn with nafion-coated multi-carbon fiber electrodes. J Neurochem 65:1257–1263

    Article  CAS  PubMed  Google Scholar 

  9. Perez XA, Andrews AM (2005) Chronoamperometry to determine differential reductions in uptake in brain synaptosomes from serotonin transporter knockout mice. Anal Chem 77:818–826

    Article  CAS  PubMed  Google Scholar 

  10. Bunin MA, Wightman RM (1998) Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci 18:4854–4860

    CAS  PubMed  Google Scholar 

  11. Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171

    Article  CAS  PubMed  Google Scholar 

  12. Cragg SJ, Rice ME (2004) DAncing past the DAT at a DA synapse. Trends Neurosci 27:270–277

    Article  CAS  PubMed  Google Scholar 

  13. Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  14. Gulley JM, Doolen S, Zahniser NR (2002) Brief, repeated exposure to substrates down-regulates dopamine transporter function in Xenopus oocytes in vitro and rat dorsal striatum in vivo. J Neurochem 83:400–411

    Article  CAS  PubMed  Google Scholar 

  15. Gulley JM, Zahniser NR (2003) Rapid regulation of dopamine transporter function by substrates, blockers and presynaptic receptor ligands. Eur J Pharmacol 479:139–152

    Article  CAS  PubMed  Google Scholar 

  16. Blakely RD, Ramamoorthy S, Schroeter S et al (1998) Regulated phosphorylation and trafficking of antidepressant-sensitive serotonin transporter proteins. Biol Psychiatry 44:169–178

    Article  CAS  PubMed  Google Scholar 

  17. Blakely RD, Bauman AL (2000) Biogenic amine transporters: regulation in flux. Curr Opin Neurobiol 10:328–336

    Article  CAS  PubMed  Google Scholar 

  18. Ramamoorthy S, Blakely RD (1999) Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 285:763–766

    Article  CAS  PubMed  Google Scholar 

  19. Daws LC, Toney GM, Davis DJ et al (1997) In vivo chronoamperometric measurements of extracellular serotonin clearance in the rat dentate gyrus. J Neurosci Methods 78:139–150

    Article  CAS  PubMed  Google Scholar 

  20. Daws LC, Toney GM, Gerhardt GA et al (1998) In vivo chronoamperometric measures of extracellular serotonin clearance in rat dorsal hippocampus: Contributions of serotonin and norepinephrine transporters. J Pharmacol Exp Ther 286:967–976

    CAS  PubMed  Google Scholar 

  21. Daws LC, Callaghan PD, Morón J et al (2002) Cocaine increases dopamine uptake and cell surface expression of dopamine transporters. Biochem Biophy Res Commun 290:1545–1550

    Article  CAS  Google Scholar 

  22. Daws LC, Montañez S, Owens WA et al (2005) Transport mechanisms governing clearance in vivo revealed by high-speed chronoamperometry. J Neurosci Methods 143:49–62

    Article  CAS  PubMed  Google Scholar 

  23. Daws LC, Montañez S, Munn L et al (2006) Ethanol inhibits clearance of brain serotonin by a serotonin transporter independent mechanism. J Neurosci 26:6431–6438

    Article  CAS  PubMed  Google Scholar 

  24. Daws LC, Toney GM (2007) Voltammetric methods to study kinetics and mechanisms for serotonin clearance in vivo. In: Michael AC, Simon SA, Nicolelis MAL (eds) Electrochemical methods in neuroscience, for Methods and new frontiers in neuroscience. CRC, Boca Raton

    Google Scholar 

  25. Baganz NL, Horton RE, Calderon AS et al (2008) Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin transporter deficient mice. Proc Natl Acad Sci U S A 105:18976–18981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wiedholz L, Owens WA, Horton RE et al (2008) Mice lacking the AMPA GluR1 receptor exhibit hyperdopaminergia and “schizophrenia-related” behaviors. Mol Psychiatry 13:631–640

    Article  CAS  PubMed  Google Scholar 

  27. Baganz NL, Horton RE, Martin KP et al (2010) Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: organic cation transporter 3, the smoking gun. J Neurosci 30:15185–15195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Horton RE, Apple DM, Owens WA et al (2013) Decynium-22 enhances SSRI-induced antidepressant effects in mice: uncovering novel targets to treat depression. J Neurosci 33:10534–10543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garcia-Olivares J, Torres-Salazar D, Owens WA et al (2013) Inhibition of dopamine transporter activity by a direct interaction with G protein βγ subunits. PLoS One 8(3):e59788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Montañez S, Munn JL, Owens WA et al (2014) 5-HT1B receptor modulation of the serotonin transporter in vivo: studies using KO mice. Neurochem Int 73:127–131

    Article  PubMed  Google Scholar 

  31. Hoffman AF, Gerhardt GA (1999) Differences in pharmacological properties of dopamine release between substantia nigra and striatum: an in vivo electrochemical study. J Pharmacol Exp Ther 289:455–463

    CAS  PubMed  Google Scholar 

  32. Callaghan PD, Irvine RJ, Daws LC (2005) Differences in the in vivo dynamics of neurotransmitter release and serotonin uptake after acute para-methoxyamphetamine and 3,4-methylenedioxymethamphetamine revealed by chronoamperometry. Neurochem Int 47:350–361

    Article  CAS  PubMed  Google Scholar 

  33. Fog JU, Khoshbouei H, Holy M et al (2006) Calmodulin kinase II interacts with the dopamine transporter C-terminus to regulate amphetamine-induced reverse transport. Neuron 51:417–429

    Article  CAS  PubMed  Google Scholar 

  34. Williams JM, Owens WA, Turner GH et al (2007) Hypoinsulinemia regulates amphetamine-induced reverse transport of dopamine. PLoS Biol 5:2369–2378

    Article  CAS  Google Scholar 

  35. Robertson SD, Matthies HJG, Owens WA et al (2010) Insulin signaling regulation of norepinephrine transporter (NET) surface availability and function, reveals Akt as a novel and potent regulator of the transporter. J Neurosci 30:11305–11316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Speed N, Owens WA, Saada S et al (2011) Diet-induced changes in insulin signalling regulates the trafficking and function of the dopamine transporter. PLoS Biol 6(9):e25169–e25169

    CAS  Google Scholar 

  37. Owens WA, Williams JM, Saunders C et al (2012) Rescue of dopamine transporter function in hypoinsulinemic rats by a D2 receptor-ERK dependent mechanism. J Neurosci 32:2637–3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rickhag M, Owens WA, Winkler M-T et al (2013) Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release. J Biol Chem 288:27534–27544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sabeti J, Adams CE, Burmeister J et al (2002) Kinetic analysis of striatal clearance of exogenous dopamine recorded by chronoamperometry in freely-moving rats. J Neurosci Methods 121:41–52

    Article  CAS  PubMed  Google Scholar 

  40. Jackson BP, Dietz SM, Wightman RM (1995) Fast-scan cyclic voltammetry of 5-hydroxtryptamine. Anal Chem 67:1115–1120

    Article  CAS  PubMed  Google Scholar 

  41. Jackson BP, Wightman RM (1995) Dynamics of 5-hydroxytryptamine released from dopamine neurons in the caudate putamen of the rat. Brain Res 674:163–166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Studies described herein were funded in part by NIH grants MH64489, MH093320, MH106978, DA18992, and DA014684 to L.C.D. and NIH grants HL102310 and HL088052 to G.M.T. The authors gratefully acknowledge Lester Rosebrock for photography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynette C. Daws .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Daws, L.C., Owens, W.A., Toney, G.M. (2016). Using High-Speed Chronoamperometry to Measure Biogenic Amine Release and Uptake In Vivo. In: Bönisch, H., Sitte, H. (eds) Neurotransmitter Transporters. Neuromethods, vol 118. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3765-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3765-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3763-9

  • Online ISBN: 978-1-4939-3765-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics