Skip to main content

Live Imaging of Centriole Dynamics by Fluorescently Tagged Proteins in Starfish Oocyte Meiosis

  • Protocol
  • First Online:
Oogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1457))

Abstract

High throughput DNA sequencing, the decreasing costs of DNA synthesis, and universal techniques for genetic manipulation have made it much easier and quicker to establish molecular tools for any organism than it has been 5 years ago. This opens a great opportunity for reviving “nonconventional” model organisms, which are particularly suited to study a specific biological process and many of which have already been established before the era of molecular biology. By taking advantage of transcriptomics, in particular, these systems can now be easily turned into full fetched models for molecular cell biology.

As an example, here we describe how we established molecular tools in the starfish Patiria miniata, which has been a popular model for cell and developmental biology due to the synchronous and rapid development, transparency, and easy handling of oocytes, eggs, and embryos. Here, we detail how we used a de novo assembled transcriptome to produce molecular markers and established conditions for live imaging to investigate the molecular mechanisms underlying centriole elimination—a poorly understood process essential for sexual reproduction of animal species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maderspacher F (2008) Theodor Boveri and the natural experiment. Curr Biol 18:R279–R286

    Article  CAS  PubMed  Google Scholar 

  2. Moritz KB, Sauer HW (1996) Boveri’s contributions to developmental biology—a challenge for today. Int J Dev Biol 40:27–47

    CAS  PubMed  Google Scholar 

  3. Scheer U (2014) Historical roots of centrosome research: discovery of Boveri’s microscope slides in Würzburg. Philos Trans R Soc Lond B Biol Sci 369:20130469

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fırat-Karalar EN, Stearns T (2014) The centriole duplication cycle. Philos Trans R Soc Lond B Biol Sci 369:20130460

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fu J, Hagan IM, Glover DM (2015) The centrosome and its duplication cycle. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a015800

    Google Scholar 

  6. Gönczy P (2015) Centrosomes and cancer: revisiting a long-standing relationship. Nat Rev Cancer 15:639–652

    Article  PubMed  Google Scholar 

  7. Delattre M, Gönczy P (2004) The arithmetic of centrosome biogenesis. J Cell Sci 117:1619–1630

    Article  CAS  PubMed  Google Scholar 

  8. Manandhar G, Schatten H, Sutovsky P (2005) Centrosome reduction during gametogenesis and its significance. Biol Reprod 72:2–13

    Article  CAS  PubMed  Google Scholar 

  9. Albertson DG, Thomson JN (1993) Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res 1:15–26

    Article  CAS  PubMed  Google Scholar 

  10. Dåvring L, Sunner M (1973) Female meiosis and embryonic mitosis in Drosophila melanogaster. Hereditas 73:51–64

    Article  PubMed  Google Scholar 

  11. Gard DL (1994) γ-Tubulin is asymmetrically distributed in the cortex of Xenopus oocytes. Dev Biol 161:131–140

    Article  PubMed  Google Scholar 

  12. Mikeladze-Dvali T, von Tobel L, Strnad P et al (2012) Analysis of centriole elimination during C. elegans oogenesis. Development 139:1670–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Szollosi D, Calarco P, Donahue RP (1972) Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J Cell Sci 11:521–541

    CAS  PubMed  Google Scholar 

  14. Crowder ME, Strzelecka M, Wilbur JD et al (2015) A comparative analysis of spindle morphometrics across metazoans. Curr Biol 25:1542–1550

    Article  CAS  PubMed  Google Scholar 

  15. Kato KH, Washitani-Nemoto S, Hino A et al (1990) Ultrastructural studies on the behavior of centrioles during meiosis of starfish oocytes. Dev Growth Differ 32:41–49

    Article  Google Scholar 

  16. Longo FJ, Anderson E (1969) Cytological aspects of fertilization in the lamellibranch, Mytilus edulis I. Polar body formation and development of the female pronucleus. J Exp Zool 172:69–95

    Article  CAS  PubMed  Google Scholar 

  17. Miyazaki A, Kato KH, Nemoto S (2005) Role of microtubules and centrosomes in the eccentric relocation of the germinal vesicle upon meiosis reinitiation in sea-cucumber oocytes. Dev Biol 280:237–247

    Article  CAS  PubMed  Google Scholar 

  18. Nakashima S, Kato KH (2001) Centriole behavior during meiosis in oocytes of the sea urchin Hemicentrotus pulcherrimus. Dev Growth Differ 43:437–445

    Article  CAS  PubMed  Google Scholar 

  19. Shirato Y, Tamura M, Yoneda M et al (2006) Centrosome destined to decay in starfish oocytes. Development 133:343–350

    Article  CAS  PubMed  Google Scholar 

  20. Tamura M, Nemoto S (2001) Reproductive maternal centrosomes are cast off into polar bodies during maturation division in starfish oocytes. Exp Cell Res 269:130–139

    Article  CAS  PubMed  Google Scholar 

  21. Uetake Y, Kato KH, Washitani-Nemoto S et al (2002) Nonequivalence of maternal centrosomes/centrioles in starfish oocytes: selective casting-off of reproductive centrioles into polar bodies. Dev Biol 247:149–164

    Article  CAS  PubMed  Google Scholar 

  22. Zhang QY, Tamura M, Uetake Y et al (2004) Regulation of the paternal inheritance of centrosomes in starfish zygotes. Dev Biol 266:190–200

    Article  CAS  PubMed  Google Scholar 

  23. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB et al (2011) Tracing the origins of centrioles, cilia, and flagella. J Cell Biol 194:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hodges ME, Scheumann N, Wickstead B et al (2010) Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 123:1407–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wühr M, Freeman RM, Presler M et al (2014) Deep proteomics of the Xenopus laevis egg using an mRNA-derived reference database. Curr Biol 24:1467–1475

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jaffe LA, Terasaki M (2004) Quantitative microinjection of oocytes, eggs, and embryos. Methods Cell Biol 74:219–242

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kiehart DP (1982) Microinjection of echinoderm eggs: apparatus and procedures. Methods Cell Biol 25(Pt B):13–31

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Lénárt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Borrego-Pinto, J., Somogyi, K., Lénárt, P. (2016). Live Imaging of Centriole Dynamics by Fluorescently Tagged Proteins in Starfish Oocyte Meiosis. In: Nezis, I. (eds) Oogenesis. Methods in Molecular Biology, vol 1457. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3795-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3795-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3793-6

  • Online ISBN: 978-1-4939-3795-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics