Skip to main content

Live Cell Imaging and Profiling of Cysteine Cathepsin Activity Using a Quenched Activity-Based Probe

  • Protocol
  • First Online:
Activity-Based Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1491))

Abstract

Since protease activity is highly regulated by structural and environmental influences, the abundance of a protease often does not directly correlate with its activity. Because in most of the cases it is the activity of a protease that gives rise to its biological relevance, tools to report on this activity are of great value to the research community. Activity-based probes (ABPs) are small molecule tools that allow for the monitoring and profiling of protease activities in complex biological systems. The class of fluorescent quenched ABPs (qABPs), being intrinsically “dark” and only emitting fluorescence after reaction with the target protease, are ideally suited for imaging techniques such as small animal noninvasive fluorescence imaging and live cell fluorescence microscopy. An additional powerful characteristic of qABPs is their covalent and irreversible modification of the labeled protease, enabling in-depth target characterization. Here we describe the synthesis of a pan-cysteine cathepsin qABP BMV109 and the application of this probe to live cell fluorescence imaging and fluorescent SDS-PAGE cysteine cathepsin activity profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824(1):68–88. doi:10.1016/j.bbapap.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  2. Cheng XW, Huang Z, Kuzuya M, Okumura K, Murohara T (2011) Cysteine protease cathepsins in atherosclerosis-based vascular disease and its complications. Hypertension 58(6):978–986. doi:10.1161/HYPERTENSIONAHA.111.180935

    Article  CAS  PubMed  Google Scholar 

  3. Lyo V, Cattaruzza F, Kim TN, Walker AW, Paulick M, Cox D, Cloyd J, Buxbaum J, Ostroff J, Bogyo M, Grady EF, Bunnett NW, Kirkwood KS (2012) Active cathepsins B, L, and S in murine and human pancreatitis. Am J Physiol Gastrointest Liver Physiol 303(8):G894–G903. doi:10.1152/ajpgi.00073.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120(10):3421–3431. doi:10.1172/JCI42918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T, Joyce JA (2010) IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24(3):241–255. doi:10.1101/gad.1874010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gounaris E, Tung CH, Restaino C, Maehr R, Kohler R, Joyce JA, Ploegh HL, Barrett TA, Weissleder R, Khazaie K (2008) Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth. PLoS One 3(8), e2916. doi:10.1371/journal.pone.0002916

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sevenich L, Bowman RL, Mason SD, Quail DF, Rapaport F, Elie BT, Brogi E, Brastianos PK, Hahn WC, Holsinger LJ, Massague J, Leslie CS, Joyce JA (2014) Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat Cell Biol 16(9):876–888. doi:10.1038/ncb3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bengsch F, Buck A, Gunther SC, Seiz JR, Tacke M, Pfeifer D, von Elverfeldt D, Sevenich L, Hillebrand LE, Kern U, Sameni M, Peters C, Sloane BF, Reinheckel T (2014) Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene 33(36):4474–4484. doi:10.1038/onc.2013.395

    Article  CAS  PubMed  Google Scholar 

  9. Sevenich L, Schurigt U, Sachse K, Gajda M, Werner F, Muller S, Vasiljeva O, Schwinde A, Klemm N, Deussing J, Peters C, Reinheckel T (2010) Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc Natl Acad Sci U S A 107(6):2497–2502. doi:10.1073/pnas.0907240107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135(2):284–294. doi:10.1016/j.cell.2008.09.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Turk B, Turk V (2009) Lysosomes as “suicide bags” in cell death: myth or reality? J Biol Chem 284(33):21783–21787. doi:10.1074/jbc.R109.023820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sloane BF, Rozhin J, Johnson K, Taylor H, Crissman JD, Honn KV (1986) Cathepsin B: association with plasma membrane in metastatic tumors. Proc Natl Acad Sci U S A 83(8):2483–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tedelind S, Poliakova K, Valeta A, Hunegnaw R, Yemanaberhan EL, Heldin NE, Kurebayashi J, Weber E, Kopitar-Jerala N, Turk B, Bogyo M, Brix K (2010) Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biol Chem 391(8):923–935. doi:10.1515/BC.2010.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A (2004) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14(2):207–219

    Article  CAS  PubMed  Google Scholar 

  15. Koblinski JE, Dosescu J, Sameni M, Moin K, Clark K, Sloane BF (2002) Interaction of human breast fibroblasts with collagen I increases secretion of procathepsin B. J Biol Chem 277(35):32220–32227. doi:10.1074/jbc.M204708200

    Article  CAS  PubMed  Google Scholar 

  16. Rothberg JM, Bailey KM, Wojtkowiak JW, Ben-Nun Y, Bogyo M, Weber E, Moin K, Blum G, Mattingly RR, Gillies RJ, Sloane BF (2013) Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia 15(10):1125–1137

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pungercar JR, Caglic D, Sajid M, Dolinar M, Vasiljeva O, Pozgan U, Turk D, Bogyo M, Turk V, Turk B (2009) Autocatalytic processing of procathepsin B is triggered by proenzyme activity. FEBS J 276(3):660–668. doi:10.1111/j.1742-4658.2008.06815.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matthews SP, Werber I, Deussing J, Peters C, Reinheckel T, Watts C (2010) Distinct protease requirements for antigen presentation in vitro and in vivo. J Immunol 184(5):2423–2431. doi:10.4049/jimmunol.0901486

    Article  CAS  PubMed  Google Scholar 

  19. Caglic D, Pungercar JR, Pejler G, Turk V, Turk B (2007) Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide-mature enzyme interactions. J Biol Chem 282(45):33076–33085. doi:10.1074/jbc.M705761200

    Article  CAS  PubMed  Google Scholar 

  20. Almeida PC, Nantes IL, Chagas JR, Rizzi CC, Faljoni-Alario A, Carmona E, Juliano L, Nader HB, Tersariol IL (2001) Cathepsin B activity regulation. Heparin-like glycosaminogylcans protect human cathepsin B from alkaline pH-induced inactivation. J Biol Chem 276(2):944–951. doi:10.1074/jbc.M003820200

    Article  CAS  PubMed  Google Scholar 

  21. Avila JL, Convit J (1975) Inhibition of leucocytic lysosomal enzymes by glycosaminoglycans in vitro. Biochem J 152(1):57–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sage J, Mallevre F, Barbarin-Costes F, Samsonov SA, Gehrcke JP, Pisabarro MT, Perrier E, Schnebert S, Roget A, Livache T, Nizard C, Lalmanach G, Lecaille F (2013) Binding of chondroitin 4-sulfate to cathepsin S regulates its enzymatic activity. Biochemistry 52(37):6487–6498. doi:10.1021/bi400925g

    Article  CAS  PubMed  Google Scholar 

  23. Dubin G (2005) Proteinaceous cysteine protease inhibitors. Cell Mol Life Sci 62(6):653–669. doi:10.1007/s00018-004-4445-9

    Article  CAS  PubMed  Google Scholar 

  24. Bell-McGuinn KM, Garfall AL, Bogyo M, Hanahan D, Joyce JA (2007) Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Res 67(15):7378–7385. doi:10.1158/0008-5472.CAN-07-0602

    Article  CAS  PubMed  Google Scholar 

  25. Edgington LE, Verdoes M, Bogyo M (2011) Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr Opin Chem Biol 15(6):798–805. doi:10.1016/j.cbpa.2011.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Serim S, Haedke U, Verhelst SH (2012) Activity-based probes for the study of proteases: recent advances and developments. ChemMedChem 7(7):1146–1159. doi:10.1002/cmdc.201200057

    Article  CAS  PubMed  Google Scholar 

  27. Sanman LE, Bogyo M (2014) Activity-based profiling of proteases. Annu Rev Biochem 83:249–273. doi:10.1146/annurev-biochem-060713-035352

    Article  CAS  PubMed  Google Scholar 

  28. Blum G, Mullins SR, Keren K, Fonovic M, Jedeszko C, Rice MJ, Sloane BF, Bogyo M (2005) Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat Chem Biol 1(4):203–209. doi:10.1038/nchembio728

    Article  CAS  PubMed  Google Scholar 

  29. Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M (2007) Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3(10):668–677. doi:10.1038/nchembio.2007.26

    Article  CAS  PubMed  Google Scholar 

  30. Verdoes M, Oresic Bender K, Segal E, van der Linden WA, Syed S, Withana NP, Sanman LE, Bogyo M (2013) Improved quenched fluorescent probe for imaging of cysteine cathepsin activity. J Am Chem Soc 135(39):14726–14730. doi:10.1021/ja4056068

    Article  CAS  PubMed  Google Scholar 

  31. Xing B, Khanamiryan A, Rao J (2005) Cell-permeable near-infrared fluorogenic substrates for imaging beta-lactamase activity. J Am Chem Soc 127(12):4158–4159. doi:10.1021/ja042829+

    Article  CAS  PubMed  Google Scholar 

  32. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223(1):77–92

    Article  CAS  PubMed  Google Scholar 

  33. Boudreau J, Koshy S, Cummings D, Wan Y (2008) Culture of myeloid dendritic cells from bone marrow precursors. J Vis Exp 17:. doi:10.3791/769

  34. Gallagher SR (2012) One-dimensional SDS gel electrophoresis of proteins. Curr Protoc Mol Biol Chapter 10:Unit 10 12A. doi:10.1002/0471142727.mb1002as97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn Verdoes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Edgington-Mitchell, L.E., Bogyo, M., Verdoes, M. (2017). Live Cell Imaging and Profiling of Cysteine Cathepsin Activity Using a Quenched Activity-Based Probe. In: Overkleeft, H., Florea, B. (eds) Activity-Based Proteomics. Methods in Molecular Biology, vol 1491. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6439-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6439-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6437-6

  • Online ISBN: 978-1-4939-6439-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics