Skip to main content

Genetic Fingerprinting Using Microsatellite Markers in a Multiplex PCR Reaction: A Compilation of Methodological Approaches from Primer Design to Detection Systems

  • Protocol
  • First Online:
Genotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1492))

Abstract

Microsatellites are polymorphic DNA loci comprising repeated sequence motifs of two to five base pairs which are dispersed throughout the genome. Genotyping of microsatellites is a widely accepted tool for diagnostic and research purposes such as forensic investigations and parentage testing, but also in clinics (e.g. monitoring of bone marrow transplantation), as well as for the agriculture and food industries. The co-amplification of several short tandem repeat (STR) systems in a multiplex reaction with simultaneous detection helps to obtain more information from a DNA sample where its availability may be limited. Here, we introduce and describe this commonly used genotyping technique, providing an overview on available resources on STRs, multiplex design, and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heras J, Domínguez C, Mata E et al (2015) A survey of tools for analysing DNA fingerprints. Brief Bioinform. doi:10.1093/bib/bbv016

    Google Scholar 

  2. Richard G, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ruitberg CM, Reeder DJ, Butler JM (2001) STRBase: a short tandem repeat DNA database for the human identity testing community. Nucleic Acids Res 29:320–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. http://www.cstl.nist.gov/strbase/intro.htm

  5. Vergnaud G, Denoeud F (2000) Minisateilites: mutability and genome architecture. Genome Res 10:899–907

    Article  CAS  PubMed  Google Scholar 

  6. Jeffreys AJ, Wilson V, Thein SL (1985) Individual-specific fingerprints of human DNA. Nature 316:76–79

    Article  CAS  PubMed  Google Scholar 

  7. Jeffreys AJ, Brookfield JF, Semeonoff R (1985) Positive identification of an immigration test-case using human DNA fingerprints. Nature 317:818–819

    Article  CAS  PubMed  Google Scholar 

  8. Roewer L (2013) DNA fingerprinting in forensics: past, present, future. Invest Genet 4:22

    Article  CAS  Google Scholar 

  9. Nagaraju J, Kathirvel M, Kumar RR et al (2002) Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. Proc Natl Acad Sci U S A 99:5836–5841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Missio RF, Caixeta ET, Zambolim EM et al (2011) Genetic characterization of an elite coffee germplasm assessed by gSSR and EST-SSR markers. Genet Mol Res 10:2366–2381

    Article  CAS  PubMed  Google Scholar 

  11. Gill P, Whitaker J, Flaxman C et al (2000) An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci Int 112:17–40

    Article  CAS  PubMed  Google Scholar 

  12. Maciejewska A, Jakubowska J, Pawłowski R (2013) Whole genome amplification of degraded and nondegraded DNA for forensic purposes. Int J Legal Med 127:309–319

    Article  PubMed  Google Scholar 

  13. Warner JB, Bruin EJ, Hannig H et al (2006) Use of sequence variation in three highly variable regions of the mitochondrial DNA for the discrimination of allogeneic platelets. Transfusion 46:554–561

    Article  CAS  PubMed  Google Scholar 

  14. Poetsch M, Wittig H, Krause D et al (2003) The impact of mtDNA analysis between positions nt8306 and nt9021 for forensic casework. Mitochondrion 3:133–137

    Article  CAS  PubMed  Google Scholar 

  15. Wain HM, Bruford EA, Lovering RC et al (2002) Guidelines for human gene nomenclature. Genomics 79:464–470

    Article  CAS  PubMed  Google Scholar 

  16. (1992) Recommendations of the DNA Commission of the International Society for Forensic Haemogenetics relating to the use of PCR-based polymorphisms. Forensic Sci Int. 55:1–3

    Google Scholar 

  17. Goellner GM, Tester D, Thibodeau S et al (1997) Different mechanisms underlie DNA instability in Huntington disease and colorectal cancer. Am J Hum Genet 60:879–890

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s Disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  19. Kremer EJ, Pritchard M, Lynch M et al (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252:1711–1714

    Article  CAS  PubMed  Google Scholar 

  20. Campuzano V, Montermini L, Moltò MD et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  CAS  PubMed  Google Scholar 

  21. Takiyama Y, Igarashi S, Rogaeva EA et al (1995) Evidence for inter-generational instability in the CAG repeat in the MJD1 gene and for conserved haplotypes at flanking markers amongst Japanese and Caucasian subjects with Machado-Joseph disease. Hum Mol Genet 4:1137–1146

    Article  CAS  PubMed  Google Scholar 

  22. Berglund EC, Kiialainen A, Syvanen A (2011) Next-generation sequencing technologies and applications for human genetic history and forensics. Invest Genet 2:23

    Article  CAS  Google Scholar 

  23. Borsting C, Morling N (2015) Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet 18:78–89

    Article  CAS  PubMed  Google Scholar 

  24. Bandelt H, Salas A (2012) Current next generation sequencing technology may not meet forensic standards. Forensic Sci Int Genet 6:143–145

    Article  CAS  PubMed  Google Scholar 

  25. Becker D, Vogelsang D, Brabetz W (2007) Population data on the seven short tandem repeat loci D4S2366, D6S474, D14S608, D19S246, D20S480, D21S226 and D22S689 in a German population. Int J Legal Med 121:78–81

    Article  PubMed  Google Scholar 

  26. Botstein D, White RL, Skolnick M et al (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jones DA (1972) Blood samples—Probability of discrimination. J Forensic Sci Soc 12:355–359

    Article  CAS  PubMed  Google Scholar 

  28. Kruger J, Fuhrmann W, Lichte KH et al (1968) On the utilization of erythrocyte acid phosphatase polymorphism in paternity evaluation. Dtsch Z Gesamte Gerichtl Med 64:127–146

    CAS  PubMed  Google Scholar 

  29. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  CAS  PubMed  Google Scholar 

  30. Fung WK, Chung YK, Wong DM (2002) Power of exclusion revisited: probability of excluding relatives of the true father from paternity. Int J Legal Med 116:64–67

    Article  PubMed  Google Scholar 

  31. Bär W, Brinkmann B, Budowle B et al (1997) DNA recommendations. Further report of the DNA Commission of the ISFH regarding the use of short tandem repeat systems. International Society for Forensic Haemogenetics. Int J Legal Med 110:175–176

    Article  PubMed  Google Scholar 

  32. Caskey CT, Edwards A (1994) DNA typing with short tandem repeat polymorphisms and identification of polymorphic short tandem repeats. U.S. Patent 5: 364,759

    Google Scholar 

  33. Promega Corporation (1995) Gene PrintTM STR Systems Technical Manual

    Google Scholar 

  34. Akane A, Shiono H, Matsubara K et al (1991) Sex identification of forensic specimens by polymerase chain reaction (PCR): two alternative methods. Forensic Sci Int 49:81–88

    Article  CAS  PubMed  Google Scholar 

  35. Sullivan KM, Mannucci A, Kimpton CP et al (1993) A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques 15(636–638):640–641

    Google Scholar 

  36. Santos FR, Pandya A, Tyler-Smith C (1998) Reliability of DNA-based sex tests. Nat Genet 18:103

    Article  CAS  PubMed  Google Scholar 

  37. McKeown B, Stickley J and Riordan A (2000) Gender assignment by PCR of the SRY gene: an improvement on amelogenin. Prog Foren Genet 8:433–435

    Google Scholar 

  38. Shewale JG, Richey SL, Sinha SK (2000) Anomalous amplification of the amelogenin locus typed by AmpFLSTR Profiler Plus amplification kit. Forensic Sci Commun 2

    Google Scholar 

  39. Dieffenbach CW, Lowe TM, Dveksler GS (1993) General concepts for PCR primer design. PCR Methods Appl 3:S30–S37

    Article  CAS  PubMed  Google Scholar 

  40. Borer PN, Dengler B, Tinoco I et al (1974) Stability of ribonucleic acid double-stranded helices. J Mol Biol 86:843–853

    Article  CAS  PubMed  Google Scholar 

  41. Rychlik W, Spencer WJ, Rhoads RE (1990) Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res 18:6409–6412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Multiple Primer Analyzer, ThermoFisher Scientific https://www.thermofisher.com/de/de/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/multiple-primer-analyzer.html

  43. Bogas V, Balsa F, Carvalho M et al (2011) Comparison of four DNA extraction methods for forensic application. Forensic Sci Int: Genet Suppl Series 3:e194–e195

    Google Scholar 

  44. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  45. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 2, 2nd edn. Cold Spring Harbor, Cold Spring Harbor, SL

    Google Scholar 

  46. Kline MC, Vallone PM, Decker AE et al (2005) Testing candidate DNA quantitation standards with several real-time quantitative PCR methods. Promega meeting. Grapevine, TX

    Google Scholar 

  47. Reus E (2008) Anwendungen der PCR in der forensischen DNA-Analyse. Biospektrum 7:708–710

    Google Scholar 

  48. Liu JY (2014) Direct qPCR quantification of unprocessed forensic casework samples. Forensic Sci Int Genet 11:96–104

    Article  CAS  PubMed  Google Scholar 

  49. Bai R, Wan L, Shi M (2008) The time-dependent expressions of IL-1beta, COX-2, MCP-1 mRNA in skin wounds of rabbits. Forensic Sci Int 175:193–197

    Article  CAS  PubMed  Google Scholar 

  50. Stranska J, Jancik S, Slavkovsky R et al (2015) Whole genome amplification induced bias in the detection of KRAS-mutated cell populations during colorectal carcinoma tissue testing. Electrophoresis 36:937–940

    Article  CAS  PubMed  Google Scholar 

  51. Ballantyne KN, van Oorschot RAH, Mitchell RJ (2007) Comparison of two whole genome amplification methods for STR genotyping of LCN and degraded DNA samples. Forensic Sci Int 166:35–41

    Article  CAS  PubMed  Google Scholar 

  52. Hawkins TL, Detter JC, Richardson PM (2002) Whole genome amplification—applications and advances. Curr Opin Biotechnol 13:65–67

    Article  CAS  PubMed  Google Scholar 

  53. WGA Kits, Sigma-Aldrich http://www.sigmaaldrich.com/life-science/molecular-biology/automation/whole-genome-amplification.html

  54. Telenius H, Carter NP, Bebb CE et al (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725

    Article  CAS  PubMed  Google Scholar 

  55. Cheung VG, Nelson SF (1996) Whole genome amplification using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than one nanogram of genomic DNA. Proc Natl Acad Sci U S A 93:14676–14679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arneson N, Hughes S, Houlston R et al. (2008) Whole-Genome Amplification by Improved Primer Extension Preamplification PCR (I-PEP-PCR). CSH Protoc 2008: pdb.prot4921.

    Google Scholar 

  57. Kroneis T, El-Heliebi A (2015) Whole genome amplification by isothermal multiple strand displacement using Phi29 DNA polymerase. Methods Mol Biol 1347:111–117

    Article  PubMed  Google Scholar 

  58. Wang G, Maher E, Brennan C et al (2004) DNA amplification method tolerant to sample degradation. Genome Res 14:2357–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li J, Harris L, Mamon H et al (2006) Whole genome amplification of plasma-circulating DNA enables expanded screening for allelic imbalance in plasma. J Mol Diagn 8:22–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Findlay I, Ray P, Quirke P et al (1995) Allelic drop-out and preferential amplification in single cells and human blastomeres: implications for preimplantation diagnosis of sex and cystic fibrosis. Hum Reprod 10:1609–1618

    Article  CAS  PubMed  Google Scholar 

  61. Barber AL, Foran DR (2006) The utility of whole genome amplification for typing compromised forensic samples. J Forensic Sci 51:1344–1349

    Article  CAS  PubMed  Google Scholar 

  62. Spits C, Le Caignec C, de Rycke M et al (2006) Whole-genome multiple displacement amplification from single cells. Nat Protoc 1:1965–1970

    Article  CAS  PubMed  Google Scholar 

  63. Short Tandem Repeat DNA Internet DataBase http://www.cstl.nist.gov/strbase/tech.htm

  64. Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  CAS  PubMed  Google Scholar 

  65. Mansfield ES, Kronick MN (1993) Alternative labeling techniques for automated fluorescence-based analysis of PCR products. Biotechniques 15:274–279

    CAS  PubMed  Google Scholar 

  66. Monforte JA, Becker CH (1997) High-throughput DNA analysis by time-of-flight mass spectrometry. Nat Med 3:360–362

    Article  CAS  PubMed  Google Scholar 

  67. Butler JM, Li J, Shaler TA et al (1998) Reliable genotyping of short tandem repeat loci without an allelic ladder using time-of-flight mass spectrometry. Int J Legal Med 112:45–49

    Article  CAS  PubMed  Google Scholar 

  68. Robertson JM (1994) Evaluation of native and denaturing polyacrylamide gel electrophoresis for short tandem repeat analysis. In: Bär W, Fiori A, Rossi U (eds) Advances in forensic haemogenetics, vol 5. Springer, Berlin, pp 320–322

    Chapter  Google Scholar 

  69. White HW, Kusukawa N (1997) Agarose-based system for separation of short tandem repeat loci. Biotechniques 22:976–980

    CAS  PubMed  Google Scholar 

  70. Warshauer DH, Lin D, Hari K et al (2013) STRait Razor: a length-based forensic STR allele-calling tool for use with second generation sequencing data. Forensic Sci Int Genet 7:409–417

    Article  CAS  PubMed  Google Scholar 

  71. Zeng X, King J, Hermanson S, Patel J et al (2015) An evaluation of the PowerSeq™ auto system: a multiplex short tandem repeat marker kit compatible with massively parallel sequencing. Forensic Sci Int Genet 19:172–179

    Article  CAS  PubMed  Google Scholar 

  72. Anvar SY, van der Gaag KJ, van der Heijden JW et al (2014) TSSV: a tool for characterization of complex allelic variants in pure and mixed genomes. Bioinformatics 30:1651–1659

    Article  CAS  PubMed  Google Scholar 

  73. Gymrek M, Golan D, Rosset S, Erlich Y (2012) lobSTR: a short tandem repeat profiler for personal genomes. Genome Res 22:1154–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Warshauer DH, King JL, Budowle B (2015) STRait Razor v2.0: the improved STR Allele Identification Tool—Razor. Forensic Sci Int Genet 14:182–186

    Article  CAS  PubMed  Google Scholar 

  75. Parson W, Strobl C, Huber G et al (2013) Evaluation of next generation mtGenome sequencing using the ion torrent personal genome machine (PGM). Forensic Sci Int Genet 7:543–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. King JL, LaRue BL, Novroski NM et al (2014) High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq. Forensic Sci Int Genet 12:128–135

    Article  CAS  PubMed  Google Scholar 

  77. Parson W, Ballard D, Budowle B et al (2016) Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements. Forensic Sci Int Genet 22:54–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to cordially thank Peter Kovacs, head of the research group Genetics of Obesity and Diabetes, and our colleagues for their everlasting scientific and personal support. We thank Mohammed Hankir for proofreading of this manuscript.

Funding

Jacqueline Krüger is funded by a Collaborative Research Center (B03, CRC1052) granted by the German Research Foundation (DFG). Dorit Schleinitz is funded by the Boehringer Ingelheim Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorit Schleinitz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Krüger, J., Schleinitz, D. (2017). Genetic Fingerprinting Using Microsatellite Markers in a Multiplex PCR Reaction: A Compilation of Methodological Approaches from Primer Design to Detection Systems. In: White, S., Cantsilieris, S. (eds) Genotyping. Methods in Molecular Biology, vol 1492. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6442-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6442-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6440-6

  • Online ISBN: 978-1-4939-6442-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics