Skip to main content

Targeting Deubiquitinating Enzymes and Autophagy in Cancer

  • Protocol
  • First Online:
Cancer Gene Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1513))

Abstract

Maintenance of proper cellular homeostasis requires constant surveillance and precise regulation of intracellular protein content. Protein monitoring and degradation is performed by two distinct pathways in a cell: the autophage–lysosome pathway and the ubiquitin–proteasome pathway. Protein degradation pathways are frequently dysregulated in multiple cancer types and can be both tumor suppressive and tumor promoting. This knowledge has presented the ubiquitin proteasome system (UPS) and autophagy as attractive cancer therapeutic targets. Deubiquitinating enzymes of the UPS have garnered recent attention in the field of cancer therapeutics due to their frequent dysregulation in multiple cancer types. The content of this chapter discusses reasoning behind and advances toward targeting autophagy and the deubiquitinating enzymes of the UPS in cancer therapy, as well as the compelling evidence suggesting that simultaneous targeting of these protein degradation systems may deliver the most effective, synergistic strategy to kill cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    Article  CAS  PubMed  Google Scholar 

  2. Amm I, Sommer T, Wolf DH (2014) Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta 1843:182–196

    Article  CAS  PubMed  Google Scholar 

  3. Levine B (2007) Cell biology: autophagy and cancer. Nature 446:745–747

    Article  CAS  PubMed  Google Scholar 

  4. Hoeller D, Dikic I (2009) Targeting the ubiquitin system in cancer therapy. Nature 458:438–444

    Article  CAS  PubMed  Google Scholar 

  5. Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10:1533–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frezza M, Schmitt S, Dou QP (2011) Targeting the ubiquitin-proteasome pathway: an emerging concept in cancer therapy. Curr Top Med Chem 11:2888–2905

    Article  CAS  PubMed  Google Scholar 

  7. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720

    Article  CAS  PubMed  Google Scholar 

  8. Thorburn A, Thamm DH, Gustafson DL (2014) Autophagy and cancer therapy. Mol Pharmacol 85:830–838

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    Article  CAS  PubMed  Google Scholar 

  10. Lin Z, Bazzaro M, Wang MC et al (2009) Combination of proteasome and HDAC inhibitors for uterine cervical cancer treatment. Clin Cancer Res 15:570–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bazzaro M, Lin Z, Santillan A et al (2008) Ubiquitin proteasome system stress underlies synergistic killing of ovarian cancer cells by bortezomib and a novel HDAC6 inhibitor. Clin Cancer Res 14:7340–7347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang XH, Jackson S, Seaman M et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    Article  CAS  PubMed  Google Scholar 

  14. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kung CP, Budina A, Balaburski G et al (2011) Autophagy in tumor suppression and cancer therapy. Crit Rev Eukaryot Gene Expr 21:71–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo JY, Xia B, White E (2013) Autophagy-mediated tumor promotion. Cell 155:1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dolfi SC, Chan LL, Qiu J et al (2013) The metabolic demands of cancer cells are coupled to their size and protein synthesis rates. Cancer Metab 1:20

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim SE, Park HJ, Jeong HK et al (2015) Autophagy sustains the survival of human pancreatic cancer PANC-1 cells under extreme nutrient deprivation conditions. Biochem Biophys Res Commun 463:205–210

    Article  CAS  PubMed  Google Scholar 

  19. Zhi X, Zhong Q (2015) Autophagy in cancer. F1000Prime Rep 7:18

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Liao Z, Zhang LJ, Xiao HT (2015) The utility of chloroquine in cancer therapy. Curr Med Res Opin 31:1009–1013

    Article  CAS  PubMed  Google Scholar 

  21. Lee JY, Koga H, Kawaguchi Y et al (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagelkerke A, Bussink J, Geurts-Moespot A et al (2015) Therapeutic targeting of autophagy in cancer. Part II: Pharmacological modulation of treatment-induced autophagy. Semin Cancer Biol 31:99–105

    Article  CAS  PubMed  Google Scholar 

  23. Ozpolat B, Benbrook DM (2015) Targeting autophagy in cancer management—strategies and developments. Cancer Manag Res 7:291–299

    Article  PubMed  PubMed Central  Google Scholar 

  24. Johnson DE (2015) The ubiquitin-proteasome system: opportunities for therapeutic intervention in solid tumors. Endocr Relat Cancer 22:T1–T17

    Article  CAS  PubMed  Google Scholar 

  25. Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23:630–639

    Article  CAS  PubMed  Google Scholar 

  26. Chen D, Frezza M, Schmitt S et al (2011) Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 11:239–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frankland-Searby S, Bhaumik SR (2012) The 26S proteasome complex: an attractive target for cancer therapy. Biochim Biophys Acta 1825:64–76

    CAS  PubMed  Google Scholar 

  28. Kane RC, Bross PF, Farrell AT, Pazdur R (2003) Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 8:508–513

    Article  PubMed  Google Scholar 

  29. Dick LR, Fleming PE (2010) Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discov Today 15:243–249

    Article  CAS  PubMed  Google Scholar 

  30. Papadopoulos KP, Burris HA 3rd, Gordon M et al (2013) A phase I/II study of carfilzomib 2-10-min infusion in patients with advanced solid tumors. Cancer Chemother Pharmacol 72:861–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dou QP, Zonder JA (2014) Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr Cancer Drug Targets 14:517–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hussain S, Zhang Y, Galardy PJ (2009) DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle 8:1688–1697

    Article  CAS  PubMed  Google Scholar 

  33. Lim KH, Baek KH (2013) Deubiquitinating enzymes as therapeutic targets in cancer. Curr Pharm Des 19:4039–4052

    Article  CAS  PubMed  Google Scholar 

  34. Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397

    Article  CAS  PubMed  Google Scholar 

  35. Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695:189–207

    Article  CAS  PubMed  Google Scholar 

  36. Ndubaku C, Tsui V (2015) Inhibiting the deubiquitinating enzymes (DUBs). J Med Chem 58:1581–1595

    Article  CAS  PubMed  Google Scholar 

  37. Yang JM (2007) Emerging roles of deubiquitinating enzymes in human cancer. Acta Pharmacol Sin 28:1325–1330

    Article  CAS  PubMed  Google Scholar 

  38. McClurg UL, Robson CN (2015) Deubiquitinating enzymes as oncotargets. Oncotarget 6:9657–9668

    Article  PubMed  PubMed Central  Google Scholar 

  39. D'Arcy P, Wang X, Linder S (2015) Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther 147:32–54

    Article  PubMed  Google Scholar 

  40. Anchoori RK, Karanam B, Peng S et al (2013) A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell 24:791–805

    Article  CAS  PubMed  Google Scholar 

  41. Kapuria V, Peterson LF, Fang D et al (2010) Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res 70:9265–9276

    Article  CAS  PubMed  Google Scholar 

  42. Donato NJ, Talpaz M, Peterson L et al (2015) Deubiquitinase inhibitors and methods for use of the same. Google Patents Publication number WO2015054555 A1

    Google Scholar 

  43. Tian Z, D'Arcy P, Wang X et al (2014) A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 123:706–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang X, D'Arcy P, Caulfield TR et al (2015) Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15. Chem Biol Drug Des 86:1036–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Coughlin K, Anchoori R, Iizuka Y et al (2014) Small-molecule RA-9 inhibits proteasome-associated DUBs and ovarian cancer in vitro and in vivo via exacerbating unfolded protein responses. Clin Cancer Res 20:3174–3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kushwaha D, O'Leary C, Cron KR et al (2015) USP9X inhibition promotes radiation-induced apoptosis in non-small cell lung cancer cells expressing mid-to-high MCL1. Cancer Biol Ther 16:392–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Korolchuk VI, Menzies FM, Rubinsztein DC (2010) Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 584:1393–1398

    Article  CAS  PubMed  Google Scholar 

  48. Vogel RI, Coughlin K, Scotti A et al (2015) Simultaneous inhibition of deubiquitinating enzymes (DUBs) and autophagy synergistically kills breast cancer cells. Oncotarget 6:4159–4170

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley Mooneyham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mooneyham, A., Bazzaro, M. (2017). Targeting Deubiquitinating Enzymes and Autophagy in Cancer. In: Kasid, U., Clarke, R. (eds) Cancer Gene Networks. Methods in Molecular Biology, vol 1513. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6539-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6539-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6537-3

  • Online ISBN: 978-1-4939-6539-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics