Skip to main content

Design of Multimodal Small Molecules Targeting miRNAs Biogenesis: Synthesis and In Vitro Evaluation

  • Protocol
  • First Online:
Drug Target miRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1517))

Abstract

microRNAs (miRNAs) are emerging as novel biological targets for medicinal chemists to develop chemical tools for intracellular regulation. In this context, the discovery of small-molecule drugs targeting specific miRNAs and modulating their production or function represents a very promising approach that could be further developed for targeted therapy in miRNA-related pathologies. Here, we describe the design of multimodal small molecules as RNA ligands targeting DICER-mediated miRNA maturation. The synthesis and the biochemical evaluation as ligands of stem-loop-structured precursor microRNAs (pre-miRNAs) are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guan L, Disney MD (2012) Recent advances in developing small molecules targeting RNA. ACS Chem Biol 7:73–86

    Article  CAS  PubMed  Google Scholar 

  2. Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13:622–638

    Article  CAS  PubMed  Google Scholar 

  3. Ambros V (2008) The evolution of our thinking about microRNAs. Nat Med 14:1036–1040

    Article  CAS  PubMed  Google Scholar 

  4. Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475:201–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  CAS  PubMed  Google Scholar 

  6. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  7. Disney MD, Yildirim I, Childs-Disney JL (2014) Methods to enable the design of bioactive small molecules targeting RNA. Org Biomol Chem 12:1029–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Monroig P, Chen L, Zhang S, Calin GA (2015) Small molecule compounds targeting miRNAs for cancer therapy. Adv Drug Deliv Rev 81:104–116

    Article  CAS  Google Scholar 

  9. Velagapudi SP, Vummidi BR, Disney MD (2015) Small molecule chemical probes of microRNA function. Curr Opin Chem Biol 24:97–103

    Article  CAS  PubMed  Google Scholar 

  10. Jayaraj GG, Nahar S, Maiti S (2015) Nonconventional chemical inhibitors of microRNA: therapeutic scope. Chem Commun 51:820–831

    Article  CAS  Google Scholar 

  11. Vo DD, Staedel C, Zehnacker L, Benhida R, Darfeuille F, Duca M (2014) Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules. ACS Chem Biol 9:711–721

    Article  CAS  PubMed  Google Scholar 

  12. Cho WJ, Shin JM, Kim JS, Lee MR, Hong KS, Lee JH, Koo KH, Park JW, Kim KS (2009) miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2. Mol Cells 28:521–527

    Article  CAS  PubMed  Google Scholar 

  13. Magnet S, Blanchard JS (2005) Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–498

    Article  CAS  PubMed  Google Scholar 

  14. Malnuit V, Duca M, Benhida R (2011) Targeting DNA base pair mismatch with artificial nucleobases. Advances and perspectives in triple helix strategy. Org Biomol Chem 9:326–336

    Article  CAS  PubMed  Google Scholar 

  15. Guianvarc'h D, Benhida R, Fourrey JL, Maurisse R, Sun JS (2001) Incorporation of a novel nucleobase allows stable oligonucleotide-directed triple helix formation at the target sequence containing a purine.pyrimidine interruption. Chem Commun 18:1814–1815

    Article  Google Scholar 

  16. Lecubin F, Benhida R, Fourrey JL, Sun JS (1999) NMR recognition studies of C•G base pairs by new easily accessible heterobicyclic systems. Tetrahedron Lett 40:8085–8088

    Article  CAS  Google Scholar 

  17. Wang W, Purwanto MG, Weisz K (2004) CG base pair recognition by substituted phenylimidazole nucleosides. Org Biomol Chem 2:1194–1198

    Article  CAS  PubMed  Google Scholar 

  18. Sasaki S, Nakashima S, Nagatsugi F, Tanaka Y, Hisatome M, Maeda M (1995) Design of a novel artificial nucleobase for the selective formation of a triple-complex with a cytosine-guanine base pair. Tetrahedron Lett 36:9521–9524

    Article  CAS  Google Scholar 

  19. Griffin LC, Kiessling LL, Beal PA, Gillespie P, Dervan PB (1992) Recognition of all four base pairs of double-helical DNA by triple-helix formation: design of nonnatural deoxyribonucleosides for pyrimidine.cntdot.purine base pair binding. J Am Chem Soc 114:7976–7982

    Article  CAS  Google Scholar 

  20. Davies BP, Arenz C (2006) A homogenous assay for micro RNA maturation. Angew Chem Int Ed 45:5550–5552

    Article  CAS  Google Scholar 

  21. Krim J, Sillahi B, Taourirte M, Rakib EM, Engels JW (2009) Microwave-assisted click chemistry: synthesis of mono and bis-1,2,3-triazole acyclonucleoside analogues of Acyclovir via copper(I)-catalyzed cycloaddition. ARKIVOC 8:142–152

    Google Scholar 

  22. Lindsell EW, Murray C, Preston PN, Woodman TAJ (2000) Synthesis of 1,3-diynes in the purine, pyrimidine, 1,3,5-triazine and acridine series. Tetrahedron 56:1233–1245

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by ANR (Agence Nationale de la Recherche, France) grant (ANR JS07-011-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Duca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vo, D.D., Duca, M. (2017). Design of Multimodal Small Molecules Targeting miRNAs Biogenesis: Synthesis and In Vitro Evaluation. In: Schmidt, M. (eds) Drug Target miRNA. Methods in Molecular Biology, vol 1517. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6563-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6563-2_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6561-8

  • Online ISBN: 978-1-4939-6563-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics