Skip to main content

Gene Transfer in Cardiomyocytes Derived from ES and iPS Cells

  • Protocol
  • First Online:
Cardiac Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1521))

Abstract

The advent of human induced pluripotent stem cell (hiPSC) technology has produced patient-specific hiPSC derived cardiomyocytes (hiPSC-CMs) that can be used as a platform to study cardiac diseases and to explore new therapies.

The ability to genetically manipulate hiPSC-CMs not only is essential for identifying the structural and/or functional role of a protein but can also provide valuable information regarding therapeutic applications. In this chapter, we describe protocols for culture, maintenance, and cardiac differentiation of hiPSCs. Then, we provide a basic procedure to transduce hiPSC-CMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397(8):3173–3178. doi:10.1007/s00216-010-3821-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wolfram JA, Donahue JK (2013) Gene therapy to treat cardiovascular disease. J Am Heart Assoc 2(4):e000119

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hajjar RJ, Schmidt U, Matsui T, Guerrero JL, Lee K-H, Gwathmey JK, Dec GW, Semigran MJ, Rosenzweig A (1998) Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci 95(9):5251–5256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chaanine AH, Kalman J, Hajjar RJ (2010) Cardiac gene therapy. Semin Thorac Cardiovasc Surg 22(2):127–139. doi:10.1053/j.semtcvs.2010.09.009

    Article  PubMed  PubMed Central  Google Scholar 

  5. Scimia MC, Gumpert AM, Koch WJ (2014) Cardiovascular gene therapy for myocardial infarction. Expert Opin Biol Ther 14(2):183–195. doi:10.1517/14712598.2014.866085

    Article  CAS  PubMed  Google Scholar 

  6. Tilemann L, Ishikawa K, Weber T, Hajjar RJ (2012) Gene therapy for heart failure. Circ Res 110(5):777–793. doi:10.1161/circresaha.111.252981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. del Monte F, Harding SE, Schmidt U, Matsui T, Kang ZB, William Dec G, Gwathmey JK, Rosenzweig A, Hajjar RJ (1999) Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 100(23):2308–2311

    Article  PubMed Central  Google Scholar 

  8. Westfall MV, Rust EM, Albayya F, Metzger JM (1997) Adenovirus-mediated myofilament gene transfer into adult cardiac myocytes. Methods Cell Biol 52:307–322

    Article  CAS  PubMed  Google Scholar 

  9. Rust EM, Westfall MV, Metzger JM (1998) Stability of the contractile assembly and Ca2+-activated tension in adenovirus infected adult cardiac myocytes. Mol Cell Biochem 18:143–155

    Article  Google Scholar 

  10. Louch WE, Sheehan KA, Wolska BM (2011) Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 51(3):288–298. doi:10.1016/j.yjmcc.2011.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vinge LE, Raake PW, Koch WJ (2008) Gene therapy in heart failure. Circ Res 102(12):1458–1470. doi:10.1161/circresaha.108.173195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B, Borow K, Dittrich H, Zsebo KM, Hajjar RJ (2009) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 15(3):171–181. doi:10.1016/j.cardfail.2009.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rincon MY, VandenDriessche T, Chuah MK (2015) Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res 108(1):4–20. doi:10.1093/cvr/cvv205

    Article  PubMed  PubMed Central  Google Scholar 

  14. Palomeque J, Chemaly ER, Colosi P, Wellman JA, Zhou S, del Monte F, Hajjar RJ (2007) Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo. Gene Ther 14(13):989–997, http://www.nature.com/gt/journal/v14/n13/suppinfo/3302895s1.html

    Article  CAS  PubMed  Google Scholar 

  15. O’Donnell JM, Lewandowski ED (2005) Efficient, cardiac-specific adenoviral gene transfer in rat heart by isolated retrograde perfusion in vivo. Gene Ther 12(12):958–964

    Article  PubMed  Google Scholar 

  16. Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R, Schinkel S, Leuchs B, Ludwig J, Qiu G, Weber C, Kleinschmidt JA, Raake P, Koch WJ, Katus HA, Müller OJ, Most P (2011) Cardiac AAV9-S100A1 gene therapy rescues postischemic heart failure in a preclinical large animal model. Sci Transl Med 3(92):92ra64. doi:10.1126/scitranslmed.3002097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gwathmey JK, Yerevanian A, Hajjar RJ (2011) Cardiac gene therapy with SERCA2a: from bench to bedside. J Mol Cell Cardiol 50(5):803–812. doi:10.1016/j.yjmcc.2010.11.011

    Article  CAS  PubMed  Google Scholar 

  18. Merentie M, Lottonen-Raikaslehto L, Parviainen V, Huusko J, Pikkarainen S, Mendel M, Laham-Karam N, Karja V, Hedman M, Yla-Herttuala S (2016) Efficacy and safety of myocardial gene transfer of adenovirus, adeno-associated virus and lentivirus vectors in mouse heart. Gene Ther 23:296. doi:10.1038/gt.2015.114

    Article  CAS  PubMed  Google Scholar 

  19. Lu HR, MariËN R, Saels ANN, De Clerck F (2001) Species plays an important role in drug-induced prolongation of action potential duration and early after depolarizations in isolated purkinje fibers. J Cardiovasc Electrophysiol 12(1):93–102. doi:10.1046/j.1540-8167.2001.00093.x

    Article  CAS  PubMed  Google Scholar 

  20. Brito-Martins M, Harding SE, Ali NN (2008) β(1)- and β(2)-adrenoceptor responses in cardiomyocytes derived from human embryonic stem cells: comparison with failing and non-failing adult human heart. Br J Pharmacol 153(4):751–759. doi:10.1038/sj.bjp.0707619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lombardi R, Bell A, Senthil V, Sidhu J, Noseda M, Roberts R, Marian AJ (2008) Differential interactions of thin filament proteins in two cardiac troponin T mouse models of hypertrophic and dilated cardiomyopathies. Cardiovasc Res 79(1):109–117. doi:10.1093/cvr/cvn078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karakikes I, Hadri L, Rapti K, Ladage D, Ishikawa K, Tilemann L, Yi G-H, Morel C, Gwathmey JK, Zsebo K, Weber T, Kawase Y, Hajjar RJ (2012) Concomitant intravenous nitroglycerin with intracoronary delivery of AAV1.SERCA2a enhances gene transfer in porcine hearts. Mol Ther 20(3):565–571. doi:10.1038/mt.2011.268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B, Tarin C, Mas S, Ortiz A, Egido J (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841. doi:10.1155/2011/497841

    Article  PubMed  PubMed Central  Google Scholar 

  24. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  26. Karakikes I, Senyei GD, Hansen J, Kong C-W, Azeloglu EU, Stillitano F, Lieu DK, Wang J, Ren L, Hulot J-S, Iyengar R, Li RA, Hajjar RJ (2014) Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem Cell Transl Med 3(1):18–31. doi:10.5966/sctm.2013-0110

    Article  CAS  Google Scholar 

  27. Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10(1):16–28. doi:10.1016/j.stem.2011.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karakikes I, Stillitano F, Nonnenmacher M, Tzimas C, Sanoudou D, Termglinchan V, Kong C-W, Rushing S, Hansen J, Ceholski D, Kolokathis F, Kremastinos D, Katoulis A, Ren L, Cohen N, Gho JMIH, Tsiapras D, Vink A, Wu JC, Asselbergs FW, Li RA, Hulot J-S, Kranias EG, Hajjar RJ (2015) Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat Commun 6:6955. doi:10.1038/ncomms7955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471(7337):225–229, http://www.nature.com/nature/journal/v471/n7337/abs/10.1038-nature09747-unlocked.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  30. Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, Navarrete EG, Hu S, Wang L, Lee A, Pavlovic A, Lin S, Chen R, Hajjar RJ, Snyder MP, Dolmetsch RE, Butte MJ, Ashley EA, Longaker MT, Robbins RC, Wu JC (2012) Patient-specific induced pluripotent stem cell as a model for familial dilated cardiomyopathy. Sci Transl Med 4(130):130ra147. doi:10.1126/scitranslmed.3003552

    Article  Google Scholar 

  31. Rapti K, Stillitano F, Karakikes I, Nonnenmacher M, Weber T, Hulot J-S, Hajjar RJ (2015) Effectiveness of gene delivery systems for pluripotent and differentiated cells. Mol Ther Methods Clin Dev 2:14067. doi:10.1038/mtm.2014.67

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH P50 HL112324, R01 HL119046, R01 HL117505, R01 HL128099, R01 HL129814, R01HL131404, & T32 HL007824 (R. J. H.), a Transatlantic Leducq Foundation grant, and a National Heart, Lung, and Blood Institute Program of Excellence in Nanotechnology award, contract HHSN268201000045C (R.J.H. and 1K99HL104002 (I.K)). We would like to acknowledge the Gene Therapy Resource Program (GTRP) of the National Heart, Lung, and Blood Institute, National Institutes of Health for providing some of the gene vectors used in these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Stillitano Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stillitano, F., Karakikes, I., Hajjar, R.J. (2017). Gene Transfer in Cardiomyocytes Derived from ES and iPS Cells. In: Ishikawa, K. (eds) Cardiac Gene Therapy. Methods in Molecular Biology, vol 1521. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6588-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6588-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6586-1

  • Online ISBN: 978-1-4939-6588-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics