Skip to main content

Expression Profiling of Antibiotic-Resistant Bacteria Obtained by Laboratory Evolution

  • Protocol
  • First Online:
Antibiotics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1520))

Abstract

To elucidate the mechanisms of antibiotic resistance, integrating phenotypic and genotypic features in resistant strains is important. Here, we describe the expression profiling of antibiotic-resistant Escherichia coli strains obtained by laboratory evolution, and a method for extracting a small number of genes whose expression changes can contribute to the acquisition of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lenski RE (1998) Bacterial evolution and the cost of antibiotic resistance. Int Microbiol 1(4):265–270

    CAS  PubMed  Google Scholar 

  2. Lazar V, Nagy I, Spohn R, Csorgo B, Gyorkei A, Nyerges A, Horvath B, Voros A, Busa-Fekete R, Hrtyan M, Bogos B, Mehi O, Fekete G, Szappanos B, Kegl B, Papp B, Pal C (2014) Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat Commun 5:4352. doi:10.1038/ncomms5352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R (2012) Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet 44(1):101–105. doi:10.1038/ng.1034

    Article  CAS  Google Scholar 

  4. Suzuki S, Horinouchi T, Furusawa C (2014) Prediction of antibiotic resistance by gene expression profiles. Nat Commun 5:5792. doi:10.1038/ncomms6792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304. doi:10.1038/35012500

    Article  CAS  PubMed  Google Scholar 

  6. Lee HH, Molla MN, Cantor CR, Collins JJ (2010) Bacterial charity work leads to population-wide resistance. Nature 467(7311):82–85. doi:10.1038/nature09354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lazar V, Pal Singh G, Spohn R, Nagy I, Horvath B, Hrtyan M, Busa-Fekete R, Bogos B, Mehi O, Csorgo B, Posfai G, Fekete G, Szappanos B, Kegl B, Papp B, Pal C (2013) Bacterial evolution of antibiotic hypersensitivity. Mol Syst Biol 9:700. doi:10.1038/msb.2013.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Imamovic L, Sommer MO (2013) Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med 5(204):204ra132. doi:10.1126/scitranslmed.3006609

    Article  PubMed  Google Scholar 

  9. Posfai G, Plunkett G 3rd, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–1046. doi:10.1126/science.1126439

    Article  CAS  PubMed  Google Scholar 

  10. Bolstad BM, Irizarry RA, Åstrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    Article  CAS  PubMed  Google Scholar 

  11. Matveeva OV, Shabalina SA, Nemtsov VA, Tsodikov AD, Gesteland RF, Atkins JF (2003) Thermodynamic calculations and statistical correlations for oligo-probes design. Nucleic Acids Res 31(14):4211–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ono N, Suzuki S, Furusawa C, Agata T, Kashiwagi A, Shimizu H, Yomo T (2008) An improved physico-chemical model of hybridization on high-density oligonucleotide microarrays. Bioinformatics 24(10):1278–1285. doi:10.1093/bioinformatics/btn109

    Article  CAS  PubMed Central  Google Scholar 

  13. Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33(Web Server Issue):W577–W581. doi:10.1093/nar/gki591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suzuki S, Horinouchi T, Furusawa C (2015) Phenotypic changes associated with the fitness cost in antibiotic resistant Escherichia coli strains. Mol Biosyst. doi:10.1039/c5mb00590f

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by a Grant-in-Aid for Scientific Research (S) [15H05746], a Grant-in-Aid for Scientific Research (B) [26290071,15H04733], and a Grant-in-Aid for Challenging Exploratory Research [26650138] from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikara Furusawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Suzuki, S., Horinouchi, T., Furusawa, C. (2017). Expression Profiling of Antibiotic-Resistant Bacteria Obtained by Laboratory Evolution. In: Sass, P. (eds) Antibiotics. Methods in Molecular Biology, vol 1520. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6634-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6634-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6632-5

  • Online ISBN: 978-1-4939-6634-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics