Skip to main content

Synaptogenic Assays Using Neurons Cultured on Micropatterned Substrates

  • Protocol
  • First Online:
Synapse Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1538))

Abstract

One of the difficulties for studying the mechanisms of synaptogenesis stems from the spatial unpredictability of contact formation between neurons, and the involvement of many parallel adhesive pathways mediating axon/dendrite recognition. To circumvent these limitations, we describe here a method allowing the investigation of synaptic contacts at controlled locations with high precision and statistics. Specifically, primary neurons are cultured on micropatterned substrates comprising arrays of micron-scale dots coated with purified synaptogenic adhesion molecules. Coating the substrates with the homophilic adhesion molecule SynCAM triggers the formation of functional presynaptic structures in axons, while neurexin elicits postsynapses in dendrites from neurons expressing the counter receptor neuroligin. This assay can be combined with various imaging techniques including immunocytochemistry to screen the accumulation of synaptic components, long-term live cell recordings to probe the kinetics of neurite growth and synapse differentiation, as well as high resolution single molecule tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garner CC, Zhai RG, Gundelfinger ED, Ziv NE (2002) Molecular mechanisms of CNS synaptogenesis. Trends Neurosci 25(5):243–251

    Article  CAS  PubMed  Google Scholar 

  2. Friedman HV, Bresler T, Garner CC, Ziv NE (2000) Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27(1):57–69

    Article  CAS  PubMed  Google Scholar 

  3. Bresler T, Shapira M, Boeckers T, Dresbach T, Futter M, Garner CC et al (2004) Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J Neurosci 24(6):1507–1520

    Article  CAS  PubMed  Google Scholar 

  4. Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17(1):91–102

    Article  CAS  PubMed  Google Scholar 

  5. Biederer T, Stagi M (2008) Signaling by synaptogenic molecules. Curr Opin Neurobiol 18(3):261–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET et al (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297(5586):1525–1531

    Article  CAS  PubMed  Google Scholar 

  7. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119(7):1013–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nam CI, Chen L (2005) Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc Natl Acad Sci U S A 102(17):6137–6142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101(6):657–669

    Article  CAS  PubMed  Google Scholar 

  10. Ko J, Zhang C, Arac D, Boucard AA, Brunger AT, Sudhof TC (2009) Neuroligin-1 performs neurexin-dependent and neurexin-independent functions in synapse validation. EMBO J 28(20):3244–3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi P, Scott MA, Ghosh B, Wan D, Wissner-Gross Z, Mazitschek R et al (2011) Synapse microarray identification of small molecules that enhance synaptogenesis. Nat Commun 2:510

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dean C, Scholl FG, Choih J, DeMaria S, Berger J, Isacoff E et al (2003) Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci 6(7):708–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heine M, Thoumine O, Mondin M, Tessier B, Giannone G, Choquet D (2008) Activity-independent and subunit-specific recruitment of functional AMPA receptors at neurexin/neuroligin contacts. Proc Natl Acad Sci U S A 105(52):20947–20952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barrow SL, Constable JR, Clark E, El-Sabeawy F, McAllister AK, Washbourne P (2009) Neuroligin1: a cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis. Neural Dev 4:17

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mondin M, Labrousse V, Hosy E, Heine M, Tessier B, Levet F et al (2011) Neurexin-neuroligin adhesions capture surface-diffusing AMPA receptors through PSD-95 scaffolds. J Neurosci 31(38):13500–13515

    Article  CAS  PubMed  Google Scholar 

  16. Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T et al (2009) Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63(5):628–642

    Article  CAS  PubMed  Google Scholar 

  17. Czondor K, Garcia M, Argento A, Constals A, Breillat C, Tessier B et al (2013) Micropatterned substrates coated with neuronal adhesion molecules for high-content study of synapse formation. Nat Commun 4:2252

    Article  PubMed  Google Scholar 

  18. de Wit J, Sylwestrak E, O’Sullivan ML, Otto S, Tiglio K, Savas JN et al (2009) LRRTM2 interacts with neurexin1 and regulates excitatory synapse formation. Neuron 64(6):799–806

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ko J, Fuccillo MV, Malenka RC, Sudhof TC (2009) LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron 64(6):791–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Linhoff MW, Lauren J, Cassidy RM, Dobie FA, Takahashi H, Nygaard HB et al (2009) An unbiased expression screen for synaptogenic ssproteins identifies the LRRTM protein family as synaptic organizers. Neuron 61(5):734–749

    Google Scholar 

  21. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1(5):2406–2415

    Article  CAS  PubMed  Google Scholar 

  22. Giannone G, Hosy E, Levet F, Constals A, Schulze K, Sobolevsky AI et al (2010) Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys J 99(4):1303–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nair D, Hosy E, Petersen JD, Constals A, Giannone G, Choquet D et al (2013) Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J Neurosci 33(32):13204–13224

    Article  CAS  PubMed  Google Scholar 

  24. Izeddin I, Boulanger J, Racine V, Specht CG, Kechkar A, Nair D et al (2012) Wavelet analysis for single molecule localization microscopy. Opt Express 20(3):2081–2095

    Article  CAS  PubMed  Google Scholar 

  25. Giannone G, Hosy E, Sibarita JB, Choquet D, Cognet L (2013) High-content super-resolution imaging of live cell by uPAINT. Methods Mol Biol 950:95–110

    CAS  PubMed  Google Scholar 

  26. Azioune A, Carpi N, Tseng Q, Thery M, Piel M (2010) Protein micropatterns: a direct printing protocol using deep UVs. Methods Cell Biol 97:133–146

    Article  CAS  PubMed  Google Scholar 

  27. Rozkiewicz DI, Kraan Y, Werten MW, de Wolf FA, Subramaniam V, Ravoo BJ et al (2006) Covalent microcontact printing of proteins for cell patterning. Chemistry 12(24):6290–6297

    Article  CAS  PubMed  Google Scholar 

  28. Fink J, Thery M, Azioune A, Dupont R, Chatelain F, Bornens M et al (2007) Comparative study and improvement of current cell micro-patterning techniques. Lab Chip 7(6):672–680

    Article  CAS  PubMed  Google Scholar 

  29. Sanjana NE, Fuller SB (2004) A fast flexible ink-jet printing method for patterning dissociated neurons in culture. J Neurosci Methods 136(2):151–163

    Article  PubMed  Google Scholar 

  30. Doyle AD, Wang FW, Matsumoto K, Yamada KM (2009) One-dimensional topography underlies three-dimensional fibrillar cell migration. J Cell Biol 184(4):481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mondin M, Tessier B, Thoumine O (2013) Assembly of synapses: biomimetic assays to control neurexin/neuroligin interactions at the neuronal surface. Curr Protoc Neurosci Chapter 2:Unit 2.19

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank P. Scheiffele and S. Okabe for the generous gift of plasmids; B. Tessier, F. Neca, and Z. Karatas for molecular biology; the Cell culture facility of the Institute; A. Azioune for help on coating protocols, J.B. Sibarita and F. Levet for image analysis; and S. Lafosse for the temporary loan of the Nikon BioStation.

This work received funding from the Centre National de la Recherche Scientifique, Agence Nationale de la Recherche (grants Synapse-2Dt and SynAdh), Conseil Régional Aquitaine and Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Thoumine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Czöndör, K., Thoumine, O. (2017). Synaptogenic Assays Using Neurons Cultured on Micropatterned Substrates. In: Poulopoulos, A. (eds) Synapse Development. Methods in Molecular Biology, vol 1538. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6688-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6688-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6686-8

  • Online ISBN: 978-1-4939-6688-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics