Skip to main content

Eye and Ear Preferences

  • Protocol
  • First Online:
Lateralized Brain Functions

Part of the book series: Neuromethods ((NM,volume 122))

Abstract

This chapter covers methods of measuring preferences to use one eye or ear to attend to a stimulus, which reflects lateralized processing of sensory information. It begins with monocular occlusion as a way of measuring differences in strength or nature of response elicited by particular visual stimuli. Depending on the type of stimulus presented a preference for responding using the left or right eye can be found (e.g. chicks show a right-eye preference when searching for food grains and a left-eye preference when attacking a conspecific or responding to a predator). Especially in species with their eyes positioned on the sides of their head, this reflects differences in processing by the left and right sides of the brain. In these species it is also possible to test responses to stimuli presented in the left versus right monocular visual fields without having to apply eye patches. A method of determining the extents of the monocular and binocular visual fields is explained. Then a modification of the monocular testing method involving rotation of the stimulus around the animal being tested is discussed: as shown in frogs and toads, response to prey moved in this manner differs between clockwise and anticlockwise rotation. Eye preferences can also be determined using binocular presentation of stimuli that cause the test animal to turn its head to permit monocular fixation of the stimulus before a specific response is made (e.g. before attacking a conspecific, as scored in chicks and horses). Angles adopted by fish when viewing their image in a mirror have been used to measure lateralization of attending to a conspecific. Another approach is simultaneous introduction of identical stimuli into the monocular field of each eye and assessment of side biases in responding (as in toads striking at insect prey). Visual pathways are discussed briefly to help explain how eye preferences reveal brain lateralization. Next, several methods of measuring lateralization of processing and responding to auditory stimuli are covered and finally some points are made about future directions of research along these lines. The suitability of these methods for testing different species is considered in all sections of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers LJ, Vallortigara G, Andrew RJ (2013) Divided brains: the biology and behavior of brain asymmetries. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Rogers LJ, Vallortigara G (2015) When and why did brains break symmetry? Symmetry 7:2181–2194. doi:10.3390/sym7042181

    Article  Google Scholar 

  3. Austin NP, Rogers LJ (2007) Asymmetry of flight and escape turning responses in horses. Laterality 12:464–474

    Article  CAS  PubMed  Google Scholar 

  4. Austin NA, Rogers LJ (2012) Limb preferences and lateralization of aggression, reactivity and vigilance in feral horses (Equus caballus). Anim Behav 83:239–247

    Article  Google Scholar 

  5. Ocklenburg S, Güntükün O (2012) Hemispheric asymmetries: the comparative view. Front Psychol 3:1–9. doi:10.3389/fpsyg.2012.00005, Article 5

    Article  Google Scholar 

  6. Rogers LJ, Anson JM (1979) Lateralisation of function in the chicken fore-brain. Pharm Biochem Behav 10:679–686

    Article  CAS  Google Scholar 

  7. Clayton NS (1993) Lateralization and unilateral transfer of spatial memory in marsh tits. J Comp Physiol A 171:799–806

    Article  Google Scholar 

  8. Mench J, Andrew RJ (1986) Lateralisation of a food search task in the domestic chick. Behav Neural Biol 46:107–114

    Article  CAS  PubMed  Google Scholar 

  9. Rogers LJ (1997) Early experiential effects on laterality: research on chicks has relevance to other species. Laterality 2:199–219

    Article  CAS  PubMed  Google Scholar 

  10. Güntürkün O, Diekamp B, Manns M, Nottelmann F, Prior H, Schwarz A, Skiba M (2000) Asymmety pays: visual lateralization improves discrimination success in pigeons. Curr Biol 10:1079–1081

    Article  PubMed  Google Scholar 

  11. Rogers LJ, Zappia JV, Bullock SP (1985) Testosterone and eye-brain asymmetry for copulation in chickens. Experientia 41:1447–1449

    Article  CAS  Google Scholar 

  12. Rogers LJ (1982) Light experience and asymmetry of brain function in chickens. Nature 297:223–225

    Article  CAS  PubMed  Google Scholar 

  13. Zappia JV, Rogers LJ (1983) Light experience during development affects asymmetry of fore-brain function in chickens. Dev Brain Res 11:93–106

    Article  Google Scholar 

  14. Cowell PE, Waters NS, Denenberg VH (1997) Effects of early environment on the development of functional laterality in Morris maze performance. Laterality 2:221–232

    Article  CAS  PubMed  Google Scholar 

  15. Bonati B, Csermely D, Sovrano VA (2013) Advantages in exploring a new environment with the left eye in lizards. Behav Proc 97:80–83

    Article  Google Scholar 

  16. Wiltschko W, Traudt J, Güntükün O, Prior H, Wiltschko R (2002) Lateralization of magnetic compass orientation in a migratory bird. Nature 419:467–470

    Article  CAS  PubMed  Google Scholar 

  17. Lippolis G, Bisazza A, Rogers LJ, Vallortigara G (2002) Lateralization of predator avoidance responses in three species of toads. Laterality 7:163–183

    Article  PubMed  Google Scholar 

  18. Lippolis G, Westman W, McAllan BM, Rogers LJ (2005) Lateralization of escape responses in the striped-faced dunnart, Sminthopsis macroura (Dasyuridae: Marsupalia). Laterality 10:457–470

    Article  PubMed  Google Scholar 

  19. Martin GR (2007) Visual fields and their functions in birds. J Ornithol 148:S547–S562

    Article  Google Scholar 

  20. Martin GR (2009) What is binocular vision for? A birds’ eye view. J Vis 9(11):14, 1–19

    Article  PubMed  Google Scholar 

  21. Ventolini N, Ferrero EA, Sponza S, della Chiesa A, Zucca P, Vallortigara G (2005) Laterality in the wild: preferential hemifield use during predatory and sexual behavior in the black-winged stilt. Anim Behav 69:1077–1084

    Article  Google Scholar 

  22. Martin GR, Katzir G (1994) Visual fields and eye movements in herons (Ardeidae). Brain Behav Evol 44:74–85

    Article  CAS  PubMed  Google Scholar 

  23. Austin NA, Rogers LJ (2014) Lateralization of agonistic and vigilance responses in Przewalski horses (Equus przewalskii). Appl Anim Behav Sci 151:43–50

    Google Scholar 

  24. Ewert J-P (1970) Neural mechanisms of prey-catching and avoidance behavior in the toad (Bufo bufo L.). Brain Behav Evol 3:36–56

    Article  CAS  PubMed  Google Scholar 

  25. Wachowitz S, Ewert J-P (1996) A key by which the toad’s visual system gets access to the domain of prey. Physiol Behav 60:877–887

    Article  CAS  PubMed  Google Scholar 

  26. Robins A, Rogers LJ (2004) Lateralised prey catching responses in the toad (Bufo marinus): analysis of complex visual stimuli. Anim Behav 68:567–575

    Article  Google Scholar 

  27. Burghagen H, Ewert J-P (1982) Question of “head preference” in response to worm-like dummies during prey-capture of toads, Bufo bufo. Behav Processes 7:295–306

    Google Scholar 

  28. Ewert J-P, Dinges AW, Finkenstädt T (1994) Species-universal stimulus responses, modified through conditioning, reappear after telencephalic lesions in toads. Naturwissenschaten 81:317–320

    Article  CAS  Google Scholar 

  29. McKenzie R, Andrew RJ, Jones RB (1998) Lateralisation in chicks and hens: new evidence for control of response by the right eye system. Neuropsychologia 36:51–58

    Article  CAS  PubMed  Google Scholar 

  30. Diekamp B, Regolin L, Güntürkün O, Vallortigara G (2005) A left-sided visuospatial bias in birds. Curr Biol 15(10):R372–R373

    Article  CAS  PubMed  Google Scholar 

  31. Rugani R, Kelly DM, Szelest I, Regolin L, Vallortigara G (2010) Is it only humans that count from left to right? Biol Lett 6:290–292

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rugani R, Vallortigara G, Vallini B, Regolin L (2011) Asymmetrical number-space mapping in the avian brain. Neurobiol Learn Mem 95:231–238

    Article  PubMed  Google Scholar 

  33. Siniscalchi M, Dimatteo S, Pepe AM, Sasso R, Quaranta A (2012) Visual lateralization in wild striped dolphins (Stenella coeruleoalba) in response to stimuli with different degrees of familiarity. PLoS One 7(1):e30001. doi:10.1371/journal.pone.0030001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vallortigara G, Cozzutti C, Tommasi L, Rogers LJ (2001) How birds use their eyes: opposite left-right specialisation for the lateral and frontal visual hemifield in the domestic chick. Curr Biol 11:29–33

    Article  CAS  PubMed  Google Scholar 

  35. Deckel AW (1995) Laterality of aggressive responses in Anolis. J Exp Zool 272:194–200

    Article  Google Scholar 

  36. Casperd JM, Dunbar RIM (1996) Asymmetries in the visual processing of emotional cues during agonistic interactions in gelada baboons. Behav Proc 37:57–65

    Article  CAS  Google Scholar 

  37. Robins A, Lippolis G, Bisazza A, Vallortigara G, Rogers LJ (1998) Lateralization of agonistic responses and hind-limb use in toads. Anim Behav 56:875–881

    Article  CAS  PubMed  Google Scholar 

  38. Robins A, Rogers LJ (2006) Complementary and lateralized forms of processing in Bufo marinus for novel and familiar prey. Neurobiol Learn Mem 86:214–227

    Article  PubMed  Google Scholar 

  39. Andrew RJ (1991) The nature of behavioural lateralization in the chick. In: Andrew RJ (ed) Neural and behavioural plasticity: the use of the domestic chick as a model. Oxford University Press, Oxford

    Chapter  Google Scholar 

  40. Vallortigara G, Andrew RJ (1991) Lateralization of response by chicks to a change in a model partner. Anim Behav 41:187–194

    Article  Google Scholar 

  41. Robins A, Chen P, Beazley LD, Dunlop SA (2005) Lateralized predatory responses in the ornate dragon lizard (Ctenophorus ornatus). Neuroreport 16:849–852

    Article  PubMed  Google Scholar 

  42. Romano M, Parolini M, Caprioli M, Spiezio C, Rubolini D, Saino N (2015) Individual and population-level sex-dependent lateralization in yellow-legged gull (Larus michahellis) chicks. Behav Processes 115:109–116

    Article  PubMed  Google Scholar 

  43. Possenti CD, Romano A, Caprioli M, Rubolini D, Spiezo C, Saino N, Parolini M (2016) Yolk testosterone affects growth and promotes individual-level consistency in behavioral lateralization of yellow-legged gull chicks. Horm Behav 80:58–67

    Article  CAS  PubMed  Google Scholar 

  44. Siniscalchi M, Sasso R, Pepe AM, Vallortigara G, Quaranta A (2010) Dogs turn left to emotional stimuli. Behav Brain Res 208:516–521

    Article  PubMed  Google Scholar 

  45. Andrew RJ, Osorio D, Budaev S (2009) Light during embryonic development modulates patterns of lateralization strongly and similarly in both zebrafish and chick. Philos Trans R Soc Lond B 362:983–989

    Article  Google Scholar 

  46. Peirce JW, Leigh AE, Kendrick KM (2000) Configurational coding, familiarity and the right hemisphere advantage for face recognition in sheep. Neuropsychologia 38:475–483

    Article  CAS  PubMed  Google Scholar 

  47. Siniscalchi M, Lusito R, Vallortigara G, Quaranta A (2013) Seeing left- or right-asymmetric tail wagging produces different emotional responses in dogs. Curr Biol 23:2279–2282

    Article  CAS  PubMed  Google Scholar 

  48. Sovrano VA, Rainoldi C, Bisazza A, Vallortigara G (1999) Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish. Behav Brain Res 106:175–180

    Article  Google Scholar 

  49. Sovrano VA, Bisazza A, Vallortigara G (2001) Lateralization of response to social stimuli in fishes: a comparison between different methods and species. Physiol Behav 74:237–244

    Article  CAS  Google Scholar 

  50. Bisazza A, de Santi A (2003) Lateralization of aggression in fish. Behav Brain Res 141:131–136

    Article  PubMed  Google Scholar 

  51. Forsatkar MN, Dadda M, Nematollahi MA (2015) Lateralization of aggression during reproduction in male Siamese fighting fish. Ethology 121:1039–1047

    Article  Google Scholar 

  52. Rogers LJ, Sink HS (1988) Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure. Exp Brain Res 70:378–384

    Article  CAS  PubMed  Google Scholar 

  53. Adret P, Rogers LJ (1989) Sex difference in the visual projections of young chicks: a quantitative study of the thalamofugal pathway. Brain Res 478:59–73

    Article  CAS  PubMed  Google Scholar 

  54. Rajendra S, Rogers LJ (1993) Asymmetry is present in the thalamofugal projections of female chicks. Exp Brain Res 92:542–544

    Article  CAS  PubMed  Google Scholar 

  55. Rogers LJ, Deng C (1999) Light experience and lateralization of the two visual pathways in the chick. Behav Brain Res 98:277–287

    Article  CAS  PubMed  Google Scholar 

  56. Rogers LJ, Bolden SW (1991) Light-dependent development and asymmetry of visual projections. Neurosci Lett 121:63–67

    Article  CAS  PubMed  Google Scholar 

  57. Deng C, Rogers LJ (1997) Differential contributions of the two visual pathways to functional lateralization in chicks. Behav Brain Res 87:173–182

    Article  CAS  PubMed  Google Scholar 

  58. Güntürkün O (1993) The ontogeny of visual lateralization in pigeons. German J Psychol 17:276–287

    Google Scholar 

  59. Güntürkün O (2002) Ontogeny of visual asymmetry in pigeons. In: Rogers LJ, Andrew RJ (eds) Comparative vertebrate lateralization. Cambridge University Press, Cambridge, pp 247–273

    Chapter  Google Scholar 

  60. Deng C, Rogers LJ (2002) Factors affecting the development of lateralization in chicks. In: Rogers LJ, Andrew RJ (eds) Comparative vertebrate lateralization. Cambridge University Press, NY, pp 206–246

    Chapter  Google Scholar 

  61. Hugdahl K (2003) Dichotic listening in the study of auditory laterality. In: Hugdahl K, Davidson RJ (eds) The asymmetrical brain. The MIT Press, Cambridge, pp 441–475

    Google Scholar 

  62. O’Leary DS (2003) Effects of attention on hemispheric asymmetry. In: Hugdahl K, Davidson RJ (eds) The asymmetrical brain. The MIT Press, Cambridge, pp 476–508

    Google Scholar 

  63. Bradshaw JL, Rogers LJ (1993) The evolution of lateral asymmetries, language, tool use, and intellect. Academic Press, San Diego

    Google Scholar 

  64. Poremba A, Mishkin M (2007) Exploring the extent and function of higher-order auditory cortex in rhesus monkeys. Hear Res 229:14–23

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ehret G (1987) Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature 325:249–251

    Article  CAS  Google Scholar 

  66. Siniscalchi M, Quaranta A, Rogers LJ (2008) Hemispheric specialization in dogs for processing different acoustic stimuli. PLoS One 3:e3349

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ratcliffe VF, Reby D (2014) Orienting asymmetries in dogs’ responses to different communicatory components of human speech. Curr Biol 24:1–5

    Article  Google Scholar 

  68. Miklósi A, Andrew RJ, Dharmaretnam M (1996) Auditory lateralization: shifts in ear use during attachment in domestic chicks. Laterality 1(3):215–224

    Article  PubMed  Google Scholar 

  69. Letzkus P, Boeddeker N, Wood JT, Zhang SW, Srinivasan MV (2006) Lateralization of visual learning in the honeybee. Biol Lett 4:16–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley J. Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rogers, L.J. (2017). Eye and Ear Preferences. In: Rogers, L., Vallortigara, G. (eds) Lateralized Brain Functions. Neuromethods, vol 122. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6725-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6725-4_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6723-0

  • Online ISBN: 978-1-4939-6725-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics