Skip to main content

Patient-Derived and Intraoperatively Formed Biomaterial for Tissue Engineering

  • Protocol
  • First Online:
Adult Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1553))

Abstract

In this chapter, we introduce a completely intraoperative procedure for obtaining a patient-derived biomaterial in cell therapy and tissue engineering applications. An automated device for processing human peripheral-blood ensures a reproducible method for retrieving the patient’s cellular-rich as well as cellular-poor plasma. By substituting calcium for animal-derived thrombin, we engineer a completely autologous hydrogel that eliminates the risk of disease transmission and lowers FDA regulation hurdles. Through this chapter, we will discuss a bedside protocol developed to prepare a patient-derived hydrogel. This method can be effectively used to develop a completely intraoperative tissue engineering strategy (CITES) that can be easily translated into the clinic for surgical use.

*Authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nukavarapu SP, Freeman JW, Laurencin CT (eds) (2015) Regenerative engineering of musculoskeletal tissues and interfaces. Elsevier, New York, NY

    Google Scholar 

  2. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nukavarapu SP, Liu H, Deng T, Oyen M, Tamerler C (eds) (2013) Advances in structures, properties, and applications of biological and bioinspired materials. Materials Research Society, New York, NY

    Google Scholar 

  4. Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31(5):706–721

    Article  CAS  PubMed  Google Scholar 

  5. Mikael PE, Xin X, Urso M, Jiang X, Wang L, Barnes B, Lichtler AC, Rowe DW, Nukavarapu SP (2014) A potential translational approach for bone tissue engineering through endochondral ossification. Conf Proc IEEE Eng Med Biol Soc 2014:3925–3928

    PubMed  Google Scholar 

  6. Mikael PE, Amini AR, Basu J, Arellano-Jimenez MJ, Laurencin CT, Sanders MM, Barry Carter C, Nukavarapu SP (2014) Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Biomed Mater 9(3):035001

    Article  PubMed  Google Scholar 

  7. Nukavarapu S, Almobark A, Casettari L, Luzzi A (2015) Hydrogels: cell delivery and tissue regeneration. In: Mishra M (ed) Encyclopedia of biomedical polymers and polymer biomaterials, vol 6. Taylor & Francis, New York, pp 3841–3852

    Google Scholar 

  8. Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kopecek J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28(34):5185–5192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu J, Zheng H (2015) Hydrogels for engineering of perfusable vascular networks. Int J Mol Sci 16:15997–16016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi D, Lee W, Jinwon P, Koh W (2008) Preparation of poly(ethylene glycol) hydrogels with different network structures for the application of enzyme immobilization. Biomed Mater Eng 18(6):345–356

    PubMed  Google Scholar 

  12. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37

    Article  CAS  Google Scholar 

  13. Alfonso M, Michelle D (2013) Surface and in-depth characterization of bioresorbable poly(lactic acid) membranes and bioresorbable chitosan-based hydrogels for therapeutic drug release; Thesis; http://hdl.handle.net/10477/50530.

  14. Zhao W, Jin X, Cong Y, Liu Y, Fu J (2012) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88(3):327–339

    Article  Google Scholar 

  15. Xu X, Jha AK, Harrington DA, Farach-carson MC, Jia X (2012) Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter 8(12):3280–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim I, Choi JS, Lee SH, Byeon HJ, Lee ES, Shin BS, Choi HG, Lee KC, Youn YS (2015) In situ facile-forming PEG cross-linked albumin hydrogels loaded with an apoptotic TRAIL protein. J Control Release 214:30–39

    Article  CAS  PubMed  Google Scholar 

  17. Wang E, Desai MS, Lee SW (2013) Light controlled graphene-elastin composite hydrogel actuators. Nano Lett 13:2826–2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tawil B, Wu B (2012) Three dimensional fiber constructs in tissue engineering. In: Hollinger JO (ed) An introduction to biomaterials, 2nd edn. CRC Taylor & Francis, Boca Raton, FL, pp 249–262

    Google Scholar 

  19. Sierpinski P, Gerrett J, Ma J, Apel P, Klorig D, Smith T, Koman LA, Atala A, Dyke MV (2008) The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 29(1):118–128

    Article  CAS  PubMed  Google Scholar 

  20. YK Y, KE S, LD B (2011) Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering. J Vis Exp 55

    Google Scholar 

  21. Li Y, Meng H, Liu Y, Lee BP (2015) Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Scientific World Journal 2015:685–690

    Google Scholar 

  22. QuinnJV (2005), Fibrin-based adhesives and hemostatic agents in Tissue adhesives in clinical medicine, BC Decker Inc, Second Edition. 80–97

    Google Scholar 

  23. WD S (2010) Fibrin sealant: past, present, and future: a brief review. World J Surg 34(4):632–634

    Article  Google Scholar 

  24. Breen A, O’brien T, Pandit A (2009) Fibrin as a delivery system for therapeutic drugs and biomolecules. Tissue Eng Part B Rev 15(2):201–214

    Article  CAS  PubMed  Google Scholar 

  25. Janmey PA, Winer JP, Weisel JW (2009) Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 6(30):1–10

    Article  CAS  PubMed  Google Scholar 

  26. Walsh PN (2004) Platelet coagulation-protein interactions. Semin Thromb Hemost 30(4):461–471

    Article  CAS  PubMed  Google Scholar 

  27. Cheng CM, Meyer-Massetti C, Kayser SR (2009) A review of three stand-alone topical thrombins for surgical hemostasis. Clin Ther 31:32–41

    Article  CAS  PubMed  Google Scholar 

  28. Marx RE (2001) Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent 10:225–228

    Article  CAS  PubMed  Google Scholar 

  29. Ruszymah BH (2004) Autologous human fibrin as the biomaterial for tissue engineering. Med J Malaysia 59 Suppl B:30–1

    Google Scholar 

  30. Arteriocyte Medical Systems Inc. (2014) Magellan autologous platelet separator. http://www.arteriocyte.com/magellanreg-autologous-platelet-separator.html. Accessed20 July 2015

  31. Christensen K, Vang S, Brady C, Isler J, Allen K, Anderson J, Holt D (2006) Autologous platelet gel: an in vitro analysis of platelet-rich plasma using multiple cycles. J Extra Corpor Technol 38(3):249–253

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Nukavarapu acknowledges funding from AO Foundation (S-13-122N), Musculoskeletal Transplant Foundation (MTF), and National Science Foundation (PFI AIR-131190 & EFRI-1332329). He also acknowledges support from Connecticut Institute for Clinical and Translational Science (CICATS) through a Mentorship award (M-1). Melissa thanks Young Innovative Investigator Program (YIIP), CICATS for fellowship. The authors are grateful to Deborah and Paiyz for their help with Magellan® System and confocal imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syam P. Nukavarapu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Joshi, S.U., Barbu, R.O., Carr-Reynolds, M., Barnes, B., Nukavarapu, S.P. (2017). Patient-Derived and Intraoperatively Formed Biomaterial for Tissue Engineering. In: Di Nardo, P., Dhingra, S., Singla, D. (eds) Adult Stem Cells. Methods in Molecular Biology, vol 1553. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6756-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6756-8_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6754-4

  • Online ISBN: 978-1-4939-6756-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics